Hydrocarbon plant

Last updated
Euphorbia lathyris, which has been the subject of hydrocarbon plant research for many years Euphorbia lathyris Sturm33.jpg
Euphorbia lathyris , which has been the subject of hydrocarbon plant research for many years

Hydrocarbon plants are plants that follow certain metabolic pathways that produce hydrocarbon products similar to petroleum. These hydrocarbon products are called terpenoids. [1] The plants that produce terpenoids in large enough quantities to be harvested can be as big as trees or as small as single-cell algae. The family Euphorbiaceae has been studied in detail by Dr. Melvin Calvin, Nobel Laureate, and discoverer of the Calvin Cycle. One particular tree of the genus Hevea , more commonly known as the rubber tree, is probably the most famous hydrocarbon plant, supplying an estimated one third of the world’s rubber demand. It is still not as quick and cheap to make as petroleum-based rubber, which is why it does not occupy a larger portion of the market. [2] Hevea naturally produces a latex substance which can tapped by cutting into the tree, and the latex can then be processed into rubber.

Contents

Most hydrocarbon plants are not trees, so this technique of tapping the tree is no longer feasible. Instead of tapping the tree, the hydrocarbons are extracted using various organic solvents. This process is especially useful with single-cell algae, such as Botryococcus braunii . This algae has two forms, both of which live in brackish water. The first form is a red algae that produces odd-numbered carbon chains roughly 25-31 atoms in length. [2] These carbon chains usually do not possess a large number of double bonds. The second type of B. braunii is green and produces even-numbered carbon chains that are between 34 and 38 carbons long, with many double bonds present. While the cause of this difference is not well-studied, the two different algae can be used for discrete purposes.

Dr. Calvin began his studies of hydrocarbon plants in 1977 by looking at yields of Euphorbia lathyris over two years. While his results were limited, due to growing season complications, [3] he did find a substantial amount of hydrocarbon products. Once the plant samples were separated using adsorption chromatography and column chromatography, they were analyzed via mass spectrometry, IR spectroscopy, UV spectroscopy, and gas chromatography, 31-and-34-carbon-long alkane chains were found to be present in the hexane layer of the adsorption chromatography [3]

The PETRO project

The PETRO project is a program started in 2011 in an attempt to create petroleum products using plants. The program is composed of ten projects that intend to extract petroleum directly from plants without affecting the U.S. food supply. The goal of the program is to make more oil per acre than what we have now, and with less processing before it gets to the pump. This results in a process that is cleaner, uses less energy, and is more sustainable than the system we have in place presently.

The ten PETRO projects include:

  1. Harvesting the sugar from sorghum and processing it into farnesene, which is an additive in diesel fuels. [4]
  2. Designing carbon fixation pathways to produce pyruvic acid. [5]
  3. Manipulating the oil producing plant Camelina so that it is drought and cold resistant, making it possible to grow in harsh environments. [6]
  4. Making photosynthesis more effective by changing chemical pathways. [7]
  5. Turning sugarcane and sorghum into oil-producing crops. [8]
  6. Engineering Camelina so that the topmost leaves reflect light onto the lower part of the plant, thereby increasing the overall efficiency of the plant. [9]
  7. Modifying Camelina so that it produces copious terpenes and modified oils. [10]
  8. Engineering tobacco so that it produces fuel molecules in its leaves. [11]
  9. Increasing the turpentine harvest in pine trees. [12]
  10. Developing plants that produce vegetable oil in their leaves and stems as opposed to their seeds. [13]

All of these efforts are funded through the ARPA-E program available through the U.S. Department of Energy. The program, headed by Jonathan Burbaum, has received over $37,000,000 of funding since its initial acceptance into the ARPA-E program.

See also

Related Research Articles

<span class="mw-page-title-main">Hydrocarbon</span> Organic compound consisting entirely of hydrogen and carbon

In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon. Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic; their odor is usually faint, and may be similar to that of gasoline or lighter fluid. They occur in a diverse range of molecular structures and phases: they can be gases, liquids, low melting solids or polymers.

<span class="mw-page-title-main">Petroleum</span> Naturally occurring combustible liquid

Petroleum or crude oil, also referred to as simply oil, is a naturally occurring yellowish-black liquid mixture of mainly hydrocarbons, and is found in geological formations. The name petroleum covers both naturally occurring unprocessed crude oil and petroleum products that consist of refined crude oil.

<span class="mw-page-title-main">Biofuel</span> Type of biological fuel

Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels such as oil. Biofuel can be produced from plants or from agricultural, domestic or industrial biowaste. Biofuels are mostly used for transportation, but can also be used for heating and electricity. Biofuels are regarded as a renewable energy source. The use of biofuel has been subject to criticism regarding the "food vs fuel" debate, varied assessments of their sustainability, and possible deforestation and biodiversity loss as a result of biofuel production.

<span class="mw-page-title-main">Biodiesel</span> Fuel made from vegetable oils or animal fats

Biodiesel is a renewable biofuel, a form of diesel fuel, derived from biological sources like vegetable oils, animal fats, or recycled greases, and consisting of long-chain fatty acid esters. It is typically made from fats.

<span class="mw-page-title-main">Terpene</span> Class of oily organic compounds found in plants

Terpenes are a class of natural products consisting of compounds with the formula (C5H8)n for n ≥ 2. Terpenes are major biosynthetic building blocks. Comprising more than 30,000 compounds, these unsaturated hydrocarbons are produced predominantly by plants, particularly conifers. In plants, terpenes and terpenoids are important mediators of ecological interactions, while some insects use some terpenes as a form of defense. Other functions of terpenoids include cell growth modulation and plant elongation, light harvesting and photoprotection, and membrane permeability and fluidity control.

Petroleum geochemistry is a branch of geochemistry which deals specifically with petroleum and its origin, generation, and accumulation, as well as its extraction, refinement, and use. Petroleum, also known as crude oil, is a solid, liquid, and/or gaesous mix of hydrocarbons. These hydrocarbons are from the burial and metamorphosis of organic matter from millions of years ago; the organic matter is from marine animals, plants, and algae. Petroleum is extracted from the Earth, refined, and used as an energy source.

<i>Camelina</i> Genus of flowering plants in the cabbage family Brassicaceae

Camelina is a genus within the flowering plant family Brassicaceae. The Camelina species, commonly known as false flax, are native to Mediterranean regions of Europe and Asia. Most species of this genus have been little studied, with the exception of Camelina sativa, historically cultivated as an oil plant. Heinrich Johann Nepomuk von Crantz was the first botanist to use the genus Camelina in his classification works in 1762.

<span class="mw-page-title-main">Biomass to liquid</span>

Biomass to liquid is a multi-step process of producing synthetic hydrocarbon fuels made from biomass via a thermochemical route.

The photosynthetic efficiency is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. Photosynthesis can be described by the simplified chemical reaction

Pyrolysis oil, sometimes also known as biocrude or bio-oil, is a synthetic fuel with few industrial application and under investigation as substitute for petroleum. It is obtained by heating dried biomass without oxygen in a reactor at a temperature of about 500 °C (900 °F) with subsequent cooling, separation from the aqueous phase and other processes. Pyrolysis oil is a kind of tar and normally contains levels of oxygen too high to be considered a pure hydrocarbon. This high oxygen content results in non-volatility, corrosiveness, partial miscibility with fossil fuels, thermal instability, and a tendency to polymerize when exposed to air. As such, it is distinctly different from petroleum products. Removing oxygen from bio-oil or nitrogen from algal bio-oil is known as upgrading.

Renewable Fuels are fuels produced from renewable resources. Examples include: biofuels, Hydrogen fuel, and fully synthetic fuel produced from ambient carbon dioxide and water. This is in contrast to non-renewable fuels such as natural gas, LPG (propane), petroleum and other fossil fuels and nuclear energy. Renewable fuels can include fuels that are synthesized from renewable energy sources, such as wind and solar. Renewable fuels have gained in popularity due to their sustainability, low contributions to the carbon cycle, and in some cases lower amounts of greenhouse gases. The geo-political ramifications of these fuels are also of interest, particularly to industrialized economies which desire independence from Middle Eastern oil.

<i>Botryococcus braunii</i> Species of alga

Botryococcus braunii is a green, pyramid-shaped planktonic microalga that is of potentially great importance in the field of biotechnology. Colonies held together by a lipid biofilm matrix can be found in temperate or tropical oligotrophic lakes and estuaries, and will bloom when in the presence of elevated levels of dissolved inorganic phosphorus. The species is notable for its ability to produce high amounts of hydrocarbons, especially oils in the form of Triterpenes, that are typically around 30–40% of their dry weight. Compared to other green alge species it has a relatively thick cell wall that is accumulated from previous cellular divisions; making extraction of cytoplasmic components rather difficult. Much of the useful hydrocarbon oil is outside of the cell.

Biofuel is fuel that is produced from organic matter (biomass), including plant materials and animal waste. It is considered a renewable source of energy that can assist in reducing carbon emissions. The two main types of biofuel currently being produced in Australia are biodiesel and bioethanol, used as replacements for diesel and petrol (gasoline) respectively. As of 2017 Australia is a relatively small producer of biofuels, accounting for 0.2% of world bioethanol production and 0.1% of world biodiesel production.

<span class="mw-page-title-main">Algae fuel</span> Use of algae as a source of energy-rich oils

Algae fuel, algal biofuel, or algal oil is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Also, algae fuels are an alternative to commonly known biofuel sources, such as corn and sugarcane. When made from seaweed (macroalgae) it can be known as seaweed fuel or seaweed oil.

Biogasoline is a type of gasoline produced from biomass such as algae. Like traditionally produced gasoline, it is made up of hydrocarbons with 6 (hexane) to 12 (dodecane) carbon atoms per molecule and can be used in internal combustion engines. However, unlike traditional gasoline/petroleum based fuels, which are mainly composed from oil, biogasolines are made from plants such as beets and sugarcane or cellulosic biomass- substances normally referred to as plant waste.

<span class="mw-page-title-main">Aviation biofuel</span> Sustainable fuel used to power aircraft

An aviation biofuel is a biofuel used to power aircraft and is a sustainable aviation fuel (SAF). The International Air Transport Association (IATA) considers it a key element in reducing the environmental impact of aviation. Aviation biofuel is used to decarbonize medium and long-haul air travel. These types of travel generate the most emissions, and could extend the life of older aircraft types by lowering their carbon footprint. Synthetic paraffinic kerosene (SPK) refers to any non-petroleum-based fuel designed to replace kerosene jet fuel, which is often, but not always, made from biomass.

<span class="mw-page-title-main">Global Clean Energy Holdings</span>

Global Clean Energy Holdings (OTC:GCEH) is a Southern California-based renewable energy company with interests in the production and commercialization of non-food-based feedstocks used for the production of biofuels, biomass, and renewable chemicals. It was founded in 2007.

<span class="mw-page-title-main">Electrofuel</span> Carbon-neutral drop-in replacement fuel

Electrofuels, also known as e-fuels, a class of synthetic fuels, are a type of drop-in replacement fuel. They are manufactured using captured carbon dioxide or carbon monoxide, together with hydrogen obtained from water split by low-carbon electricity sources such as wind, solar and nuclear power.

Yield10 Bioscience is a company developing new technologies to achieve improvements in crop yield to enhance global food security.

References

  1. "Hydrocarbon plants". www.grasys.com (in Russian). Retrieved 2017-04-22.
  2. 1 2 [ dead link ]
  3. 1 2 Calvin, Melvin, Esther K. Nementhy, and John W. Otvos. "HYDROCARBONS & ENERGY FROM PLANTS." (1978): n. pag. eScholarship. University of California, 20 June 2011. Web. 16 Apr. 2013.
  4. "Biofuels from sorghum". arpa-e.energy.gov. February 20, 1913. Archived from the original on October 20, 2013. Retrieved September 10, 2016.
  5. "Efficient CO2 fixation pathways". ara-e.energy.gov. 20 February 2013. Archived from the original on 20 October 2013. Retrieved September 11, 2016.
  6. "Enhanced carbon concentration in Camelina". arpa-e.energy.gov. Archived from the original on October 20, 2013. Retrieved September 11, 2016.
  7. "Fuel from tobacco and Arundo donax". arpa-e.energy.gov. Archived from the original on October 20, 2013. Retrieved September 10, 2016.
  8. "Genetically enhanced sorghum and sugarcane". arpa-e.energy.gov. Archived from the original on October 20, 2013. Retrieved September 10, 2016.
  9. "Improved light utilization in camelina". arpa-e.energy.gov. Archived from the original on October 20, 2013. Retrieved September 10, 2016.
  10. "Jet fuel from Camelina". arpa-e.energy.gov. Archived from the original on October 20, 2013. Retrieved September 10, 2016.
  11. "ARPA-E | Oil from Tobacco Leaves". Arpa-e.energy.gov. 2015-03-26. Retrieved 2016-09-04.
  12. "Tappable pine trees". arpa-e.energy.gov. Archived from the original on June 4, 2014. Retrieved September 10, 2016.
  13. "Vegetable oil form leaves and stems". arpa-e.energy.gov. Archived from the original on 20 October 2013. Retrieved 11 September 2016.