Camelina sativa | |
---|---|
Scientific classification | |
Kingdom: | Plantae |
Clade: | Tracheophytes |
Clade: | Angiosperms |
Clade: | Eudicots |
Clade: | Rosids |
Order: | Brassicales |
Family: | Brassicaceae |
Genus: | Camelina |
Species: | C. sativa |
Binomial name | |
Camelina sativa | |
Synonyms [1] | |
|
Camelina sativa is a flowering plant in the family Brassicaceae usually known as camelina, gold-of-pleasure, or false flax, but also occasionally as wild flax, linseed dodder, German sesame, or Siberian oilseed. It is native to Europe and areas of Central Asia, but cultivated as an oilseed crop mainly in Europe and in North America. It is not related to true flax, in the family Linaceae.
As a summer or winter annual plant, camelina grows to heights of 30–120 cm (12–47 in), with branching stems which become woody at maturity. The leaves are alternate on the stem, lanceolate with a length from 2–8 cm (0.79–3.15 in) and a width of 2–10 mm (0.079–0.394 in). Leaves and stems may be partially hairy. It blooms in the UK, between June and July. [2] Its abundant, four-petaled flowers are pale yellow in colour, and cross-shaped. Later, it produces a fruit which is pear shaped with a short beak. The seeds are brown,[ citation needed ] or orange in colour and a length of 2–3 mm (0.079–0.118 in). [3] The 1,000-seed weight ranges from 0.8–2.0 g (0.028–0.071 oz). [4]
Today, camelina is found, wild or cultivated, in almost all regions of Europe, Asia, and North America, but also in South America, Australia, and New Zealand. [3] Camelina seems to be particularly adapted to cold semiarid climate zone (steppes and prairies). [5]
C. sativa has been traditionally cultivated as an oilseed crop to produce vegetable oil and animal feed. Ample archeological evidence shows it has been grown in Europe for at least 3,000 years. The earliest archaeologic sites where it was found include the Neolithic levels at Auvernier, Switzerland (dated to the second millennium BC), the Chalcolithic level at Pefkakia in Greece (dated to the third millennium BC), and Sucidava-Celei, Romania (circa 2200 BC). [6] During the Bronze Age and Iron Age, it was an important agricultural crop in northern Greece beyond the current range of the olive. [7] [8] It apparently continued to be grown at the time of the Roman Empire, although its Greek and Latin names are not known. [9] As early as 600 BC, it was being sown as a monoculture around the Rhine River Valley, and was thought to have spread mainly by coexisting as a weed with flax monocultures.
Until the 1940s, camelina was an important oil crop in eastern and central Europe, and currently has continued to be cultivated in a few parts of Europe for its seed oil. Camelina oil was used in oil lamps (until the modern harnessing of natural gas, propane, and electricity) and as an edible oil (camelina oil, also referred to as wild flax or false flax oil). [4] It was possibly brought to North America unintentionally as a weed with flaxseed, and has had limited commercial importance until modern times. Currently, the breeding potential is unexplored compared to other oilseeds commercially grown around the world. [10]
The seed oil was used in the kitchen or burnt in lamps. [2]
The crop is now being researched due to its exceptionally high level (up to 45%) of omega-3 fatty acids, which is uncommon in vegetable sources. Seeds contain 38 to 43% oil and 27 to 32% protein. [11] Over 50% of the fatty acids in cold-pressed camelina oil are polyunsaturated. The oil is also very rich in natural antioxidants, such as tocopherols, making this highly stable oil very resistant to oxidation and rancidity. [12] It has 1–3% erucic acid; recently, several low-erucic and zero-erucic Camelina sativa varieties (with erucic acid content of less than 1%) have been introduced. [12] The vitamin E content of camelina oil is approximately 110 mg/100 g. It is well suited for use as a cooking oil as it has an almond-like flavor and aroma. [13]
16:0 | 18:0 | 18:1 | 18:2 (omega-6) | 18:3 (omega-3) | 20:0 | 20:1 | 22:1 | |
---|---|---|---|---|---|---|---|---|
Camelina | 7.8 | 3.0 | 16.8 | 23.0 | 31.2 | 0 | 12.0 | 2.8 |
Canola | 6.2 | 0 | 61.3 | 21.6 | 6.6 | 0 | 0 | 0 |
Flax | 5.3 | 3.1 | 16.2 | 14.7 | 59.6 | 0 | 0 | 0.9 |
Sunflower | 6.0 | 4.0 | 16.5 | 72.4 | 0 | 0 | 0 | 0 |
The oil is registered under the name "Olej rydzowy tradycyjny" as a Traditional Speciality Guaranteed product in the European Union [14] and the United Kingdom. [15]
The US state of Montana has recently been growing more camelina for its potential as a biofuel and biolubricant. [16] Plant scientists at the University of Idaho, Washington State University, and other institutions also are studying this emerging biodiesel.
Studies have shown camelina-based jet fuel reduces net carbon emissions by about 80%. The United States Navy chose it as the feedstock for their first test of aviation biofuel, [17] and successfully operated a static F414 engine (used in the F/A-18 Hornet and F/A-18E/F Super Hornet) in October 2009 at Naval Air Station Patuxent River, Maryland. [18] The United States Air Force also began testing the fuel in its aircraft in March 2010. [19] On 22 April 2010, the U.S. Navy observed Earth Day by conducting a flight test lasting about 45 minutes at Naval Air Station Patuxent River of an F/A-18 Super Hornet – nicknamed the "Green Hornet" – powered by a 50/50 blend of conventional jet fuel and a biofuel made from camelina; the flight was the first of a planned 15 test flights totaling about 23 flight-hours, scheduled for completion by mid-June 2010. [20] In March 2011, the U.S. Air Force successfully tested a 50/50 mix of jet propellant 8 (JP-8) and camelina-derived biofuel in an F-22 Raptor, achieving a speed of Mach 1.5 on 18 March 2011. [21] On 4 September 2011, the U.S. Navy's Blue Angels flight demonstration squadron used a 50/50 blend of camelina biofuel and jet fuel at the Naval Air Station Patuxent River Air Expo, the first time an entire military aviation unit flew on a biofuel mix. [22] In 2011, the U.S. Navy announced plans to deploy a "Great Green Fleet," a carrier battle group powered entirely by nonfossil fuels, by 2016. [23] By 2016, the U.S. Air Force wants 50% of the fuel it consumes to be from biofuels. [24]
Continental Airlines, was the first commercial airline to test a 50:50 blend of bio-derived "green jet" fuel and traditional jet fuel in the first demonstration of the use of sustainable biofuel to power a commercial aircraft in North America.( January 2009). The demonstration flight, conducted in partnership with Boeing, GE Aviation/CFM International, and Honeywell's UOP, marked the first sustainable biofuel demonstration flight by a commercial carrier using a two-engine aircraft: a Boeing 737-800 equipped with CFM International CFM56-7B engines. Continental ran the blend in Engine No. 2. During the two-hour test flight, Continental pilots engaged the aircraft in a number of normal and non-normal flight maneuvers, such as mid-flight engine shutdown and restart, and power accelerations and decelerations. A Continental engineer recorded flight data on board. KLM, the Royal Dutch Airline, was the first airline to operate a passenger-carrying flight using biofuel. On 23 November 2009, a Boeing 747 flew, carrying a limited number of passengers, with one of its four engines running on a 50/50 mix of biofuel and kerosene. [25] [26]
In June 2011, a Gulfstream G450 became the first business jet to cross the Atlantic Ocean using a blend of 50/50 biofuel developed by Honeywell derived from camelina and petroleum-based jet fuel. [27] [ citation needed ] The Dutch biofarming company Waterland International and a Japanese federation of farmers made an agreement in March 2012 to plant and grow camelina on 2000 to 3000 ha in Fukushima Prefecture. The seeds were to be used to produce biofuel, that could be used to produce electricity. According to director William Nolten, the region had a big potential for the production of clean energy. Some 800.000 ha in the region could not be used to produce food anymore, and after the nuclear disaster because of fears for contamination, the Japanese people refused to buy food produced in the region, anyway. Experiments would be done to find out whether camelina was capable of extracting radioactive caesium from the soil. An experiment with sunflowers had no success. [28]
A partnership of Chevron and Bunge companies purchased an Argentina camelina sativa seed producer, Chacraservicios, in July 2023 to contribute to their bio-diesel production. [29]
Camelina has been approved as a cattle feed supplement in the US, [30] as well as an ingredient (up to 10% of the ration) in broiler chicken feed [31] and laying hen feed. [32] Camelina meal, the byproduct of camelina when the oil has been extracted, has a significant crude protein content. "Feeding camelina meal significantly increased (p < 0.01) omega-3 [fatty acid] concentration in both breast and thigh meat [of turkeys] compared to control group." Medical research indicates a diet abundant in omega-3 fatty acids is beneficial to human health. [33] Camelina oil has also been investigated as a sustainable lipid source to fully replace fish oil in diets for farmed Atlantic salmon, rainbow trout, and Atlantic cod. [34] However, various antinutritional factors are present in camelina oil meal and can affect its use as livestock feed. [35] [36] The use of camelina meal for animal feed is only limited by the presence of glucosinolates. [37]
The Canadian Food Inspection Agency has approved feeding cold-pressed non-solvent extracted Camelina meal to broiler chickens at up to 12% inclusion. [38] [39]
Approximately 50,000 acres are currently cultivated in Canada. The Camelina Association of Canada projects Canada estimates that 1 to 3 million acres could be planted in the future. Several factors challenge the spread of camelina cultivation in Canada: it does not have government crop classification, and camelina meal is not approved as livestock feed. In early 2010, Health Canada approved camelina oil as a food in Canada. [40]
In 2014, camelina was included for the first time in Canada's Advance Payments Program (APP), commonly known as the cash advance program. [41]
The first full genome sequence for Camelina sativa was released on 1 August 2013, by a Canadian research team. The genome sequence and its annotation are available in a genome viewer format and enabled for sequence searching and alignment. [42] Technical details of Camelina's genome sequence were published on 23 April 2014 in the academic journal Nature Communications. [43]
In 2013, Rothamsted Research in the UK reported they had developed a genetically modified form of Camelina sativa that produced Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) at levels equivalent to fish oil. [44] EPA and DHA are long-chain omega-3 fatty acids which are beneficial for cardiovascular health. The main source of these omega-3 fatty acids is fish but supplies are limited and unsustainable. [45] [46] In October 2023, Yield10 Bioscience acquired an exclusive commercial license for the Rothansted's EPA/DHA Camelina. [47] In January 2024, Yield10 requested a Regulatory Status Review from USDA-APHIS for the modified Camelina. [48]
Camelina is a short-season crop (85–100 days) and grows well in the temperate climate zone in light or medium soils. Camelina is generally seeded in spring from March to May, but can also be seeded in fall in mild climates. [49]
A seeding rate of 3–4 kg/ha is recommended, with an row interval of 12 to 20 cm. [50] Seeding depth should not exceed 1 cm. With high seeding rates, these independently noncompetitive seedlings become competitive against weeds because of their density. The seedlings are early emerging and can withstand mild frosts in the spring. Minimal seedbed preparation is needed to establish camelina. [4]
Usually, camelina does not need any field interventions. However, perennial weeds may be difficult to control. Some specialized oilseed herbicides can be used on it. Also, camelina is highly resistant to black leg and Alternaria brassicae, but it can be susceptible to sclerotinia stem rot. No insect has been found to cause economic damage to camelina. [4] Camelina needs little water or nitrogen to flourish; it can be grown on marginal agricultural lands. Fertilization requirements depend on soils, but are generally low. It may be used as a rotation crop for wheat and other cereals, to increase the health of the soil. [51] Camelina can also show some allelopathic traits, and it can be grown in mixed crop with cereals or legumes. [52]
Camelina is harvested and seeded with conventional farming equipment, which makes adding it to a crop rotation relatively easy for farmers who do not already grow it. [53] [54]
Seed yields vary depending on conditions and can reach 2700 kg/ha (2400 lb/acre). [4]
C. sativa subsp. linicola is considered a weed in flax fields. In fact, attempts to separate its seed from flax seeds with a winnowing machine over the years have selected for seeds which are similar in size to flax seeds, an example of Vavilovian mimicry.
Flax, also known as common flax or linseed, is a flowering plant, Linum usitatissimum, in the family Linaceae. It is cultivated as a food and fiber crop in regions of the world with temperate climates. In 2022, France produced 75% of the world's supply of flax.
α-Linolenic acid, also known as alpha-linolenic acid (ALA), is an n−3, or omega-3, essential fatty acid. ALA is found in many seeds and oils, including flaxseed, walnuts, chia, hemp, and many common vegetable oils.
Rapeseed, also known as rape and oilseed rape, is a bright-yellow flowering member of the family Brassicaceae, cultivated mainly for its oil-rich seed, which naturally contains appreciable amounts of erucic acid. The term "canola" denotes a group of rapeseed cultivars that were bred to have very low levels of erucic acid and which are especially prized for use as human and animal food. Rapeseed is the third-largest source of vegetable oil and the second-largest source of protein meal in the world.
Erucic acid is a monounsaturated omega-9 fatty acid, denoted 22:1ω9. It has the chemical formula: CH3(CH2)7CH=CH(CH2)11CO2H. It is prevalent in wallflower seed and other plants in the family Brassicaceae, with a reported content of 20 to 54% in high erucic acid rapeseed oil and 42% in mustard oil. Erucic acid is also known as cis-13-docosenoic acid and the trans isomer is known as brassidic acid.
Mustard oil can mean either the pressed oil used for cooking, or a pungent essential oil also known as volatile oil of mustard. The essential oil results from grinding mustard seed, mixing the grounds with water, and isolating the resulting volatile oil by distillation. It can also be produced by dry distillation of the seed. Pressed mustard oil is used as cooking oil in some cultures, but sale is restricted in some countries due to high levels of erucic acid. Varieties of mustard seed low in erucic acid have been cultivated.
Camelina is a genus within the flowering plant family Brassicaceae. The Camelina species, commonly known as false flax, are native to Mediterranean regions of Europe and Asia. Most species of this genus have been little studied, with the exception of Camelina sativa, historically cultivated as an oil plant. Heinrich Johann Nepomuk von Crantz was the first botanist to use the genus Camelina in his classification works in 1762.
Linola is the trademark name of solin, cultivated forms of flax bred for producing linseed oil with a low alpha-linolenic acid content. Linola was developed in the early 1990s by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). It was developed and released in Australia in 1992 and first commercially grown in 1994. Australian Linola varieties are named after Australian lakes.
Omega-9 fatty acids are a family of unsaturated fatty acids which have in common a final carbon–carbon double bond in the omega−9 position; that is, the ninth bond from the methyl end of the fatty acid.
Crambe abyssinica is an annual oilseed crop of the family Brassicaceae. It is mainly cultivated due to the high levels of erucic acid that are contained in its seeds. The crambe oil is used for industrial purposes and its side products can be partly used as animal feed.
Camelina oil or False flax oil is a pressed seed oil, derived from the Camelina sativa or false flax, also called gold of pleasure. False flax has long been grown in Europe, and its oil used as a lamp oil until the 18th century. In recent times, it has been explored for use in cosmetic and skin care products. It has a high content of omega-3 and is used as a food supplement by some cultures. It is registered under the name "Olej rydzowy tradycyjny" as a Traditional Speciality Guaranteed product in the European Union and the United Kingdom.
Thlaspi arvense, known by the common name field pennycress, is a flowering plant in the cabbage family Brassicaceae. It is native to Eurasia, and is a common weed throughout much of North America and its home.
Jatropha curcas is a species of flowering plant in the spurge family, Euphorbiaceae, that is native to the American tropics, most likely Mexico and Central America. It is originally native to the tropical areas of the Americas from Mexico to Argentina, and has been spread throughout the world in tropical and subtropical regions around the world, becoming naturalized or invasive in many areas. The specific epithet, "curcas", was first used by Portuguese doc Garcia de Orta more than 400 years ago. Common names in English include physic nut, Barbados nut, poison nut, bubble bush or purging nut. In parts of Africa and areas in Asia such as India it is often known as "castor oil plant" or "hedge castor oil plant", but it is not the same as the usual castor oil plant, Ricinus communis.
Brassica carinata is a species of flowering plant in the Brassicaceae family. It is referred to by the common names Ethiopian rape or Ethiopian mustard. It is believed to be a hybrid between Brassica nigra and Brassica oleracea.
An aviation biofuel is a biofuel used to power aircraft and is a sustainable aviation fuel (SAF). The International Air Transport Association (IATA) considers it a key element in reducing the environmental impact of aviation. Aviation biofuel is used to decarbonize medium and long-haul air travel. These types of travel generate the most emissions, and could extend the life of older aircraft types by lowering their carbon footprint. Synthetic paraffinic kerosene (SPK) refers to any non-petroleum-based fuel designed to replace kerosene jet fuel, which is often, but not always, made from biomass.
Global Clean Energy Holdings (OTC:GCEH) is a Southern California-based renewable energy company with interests in the production and commercialization of non-food-based feedstocks used for the production of biofuels, biomass, and renewable chemicals. It was founded in 2007.
Sustainable Oils is a renewable fuels company specializing in the research and production of Camelina, the only advanced biofuels feedstock with United States Department of Agriculture, Environmental Protection Agency, and Food and Drug Administration (FDA) regulatory approvals. Oil extracted from Camelina seeds can be processed into a number of renewable products including renewable jet fuel, green diesel, biodiesel, green plastics and renewable oleochemicals. The biomass that remains after oil extraction, generally referred to seedcake or meal, can be used as nutrient-rich animal feed. Camelina offers several advantages over traditional biofuel feedstocks like soy and corn, such as competitive oil yields and shorter growing seasons. Sustainable Oils has its primary operations in the state of Montana and is headquartered in Great Falls.
An oilseed press is a machine that lies at the center of vegetable oil extraction. This is due to the fact that this technology is designed to release oil from oilseeds. Multiple oilseed press layouts have been developed over time to complete this process, with each having its own distinct set of advantages and disadvantages. Moreover, the products that are created by oilseed presses, namely oil and oilseed meal, possess great nutritive benefits for humans and livestock respectively. The oilseed press, being at the center of the oil-extraction process, is joined with various other pieces of equipment and procedures that form a pre- and post-extraction system.
The production of flax and other oilseed crops peak in the temperate climates of the middle mountain and hill farming regions in Nepal. Flax matures in approximately 90 to 125 days and develops most rapidly under the cool, short season of growing. The middle hill region of the Lamjung district exemplifies an ideal climate for flax production experiencing consistently cool temperatures for most of the year. The shallow rooting system makes the plant especially susceptible to drought and excess moisture in the soil but easier to harvest. Most cash crops are grown in the hill regions of Nepal as this is where two-thirds of the subsistence farmers reside, who need to produce just enough food to feed themselves and their families.
Rapeseed oil is one of the oldest known vegetable oils. There are both edible and industrial forms produced from rapeseed, the seed of several cultivars of the plant family Brassicaceae. Historically, it was restricted as a food oil due to its content of erucic acid, which in laboratory studies was shown to be damaging to the cardiac muscle of laboratory animals in high quantities and which imparts a bitter taste, and glucosinolates, which made many parts of the plant less nutritious in animal feed. Rapeseed oil from standard cultivars can contain up to 54% erucic acid.