Biogasoline

Last updated

Biogasoline or biopetrol (British English) is a type of gasoline produced from biomass such as algae. Like traditionally produced gasoline, it is made up of hydrocarbons with 6 (hexane) to 12 (dodecane) carbon atoms per molecule and can be used in internal-combustion engines. Biogasoline is chemically different from biobutanol and bioethanol, as these are alcohols, not hydrocarbons.

Contents

Companies such as Diversified Energy Corporation are developing approaches to take triglyceride inputs and through a process of deoxygenation and reforming (cracking, isomerising, aromatising, and production of cyclic molecules) producing biogasoline. This biogasoline is intended to match the chemical, kinetic, and combustion characteristics of its petroleum counterpart, but with much higher octane levels. Others are pursuing similar approaches based on hydrotreating. Still others are focusing on using woody biomass and enzymatic processes.

Structure and properties

BG100, or 100% biogasoline, is formulated so that it can immediately be used as a drop-in substitute for petroleum-derived gasoline in any conventional gasoline engine, and can be distributed in the same fueling infrastructure, as the properties match traditional gasoline from petroleum. [1] Dodecane requires a small percentage of octane booster to match gasoline. Ethanol fuel (E85) requires specialised fuel systems and has lower combustion energy and corresponding fuel economy. [2]

Biogasoline's chemical similarities allow it to be fully miscible with regular gasoline. Biogasoline is also formulated to not require fuel system modifications, unlike ethanol. [3]

Comparison to common fuels

Fuel Energy Density
MJ/L
Air-fuel
ratio
Specific Energy
MJ/kg
Heat of Vaporization
MJ/kg
RON MON
Gasoline 34.614.646.90.3691–9981–89
Butanol fuel 29.211.236.60.439678
Ethanol fuel 24.09.030.00.92129102
Methanol fuel 19.76.515.61.2136104

Production

Biogasoline Production Process BiogasolineProduction.png
Biogasoline Production Process

Biogasoline is created by turning sugar directly into gasoline. In late March 2010, the world’s first biogasoline demonstration plant was started in Madison, WI by Virent Energy Systems, Inc. [4] Virent discovered and developed a technique called Aqueous Phase Reforming (APR) in 2001. APR includes many processes including reforming to generate hydrogen, dehydrogenation of alcohols/hydrogenation of carbonyls, deoxygenation reactions, hydrogenolysis and cyclization. The input for APR is a carbohydrate solution created from plant material, and the product is a mixture of chemicals and oxygenated hydrocarbons. From there, the materials go through further conventional chemical processing to yield the final result: a mixture of non-oxygenated hydrocarbons that they claimed was cost-effective. These hydrocarbons are the exact hydrocarbons found in petroleum fuels which is why today’s cars do not need to be altered to run on biogasoline. The only difference is in origin. Petroleum based fuels are made from oil, and biogasoline is made from plants such as beets and sugarcane or cellulosic biomass which would normally be plant waste. [5]

Diesel fuel is made up of linear hydrocarbons. These are long straight carbon atom chains. They differ from the shorter, branched hydrocarbons that make up gasoline. In 2014 Researchers used a feedstock of levulinic acid to create biogasoline. Levulinic acid is derived from cellulose material, such as corn stalks, straw or other plant waste. That waste does not have to be fermented. The fuel-making process is reportedly inexpensive and offers yields of over 60 percent. [6]

Research

Research is conducted in both the academic and private sectors.

Academic

Virginia Polytechnic Institute and State University has been researching for the past four years on making stable biogasoline in current oil refineries. Their focus of the research was the length of time bio-oil’s shelf-life. The use of catalysts was used in order to remove impurities from the processed plant sugars. The researchers extended the time from three months to over a year. [7]

Iowa State University researchers use a type of fermentation in their research. They first start by forming a gaseous mixture and pyrolysize it. The result of the pyrolysis is bio-oil which the sugar rich portion is fermented and distilled to create water and ethanol. But the high acetate portion is then separated into biogasoline, water, and biomass. [8]

Private

Virent Energy Systems, Inc. which is located in Madison, Wisconsin in conjunction with [Marathon] has developed a technique to turn plant sugars from wheat straw, corn stalks, and sugarcane pulp into biogasoline. The sugars are converted into hydrocarbons similar to those in regular gasoline by the use of catalysts. [9]

Economic viability and future

One of the major problems facing the economic viability of biogasoline is the high up- front cost. Research groups are finding that current investment groups are impatient with the pace of biogasoline progress. In addition, environmental groups may demand that biogasoline that is produced in a way that protects wildlife, especially fish. [10] A research group studying the economic viability of biofuels found that current techniques of production and high costs of production will prevent biogasoline from being accessible to the general public. [11] The group determined that the price of biogasoline would need to be approximately $800 per barrel, which they determine as unlikely with current production costs. [12] Another problem inhibiting the success of biogasoline is the lack of tax relief. The government is providing tax relief for ethanol fuels but has yet to offer tax relief for biogasoline. [13] This makes biogasoline a much less attractive option to consumers. Lastly, producing biogasoline could have a large effect on the farming industry. If biogasoline became a serious alternative, a large percentage of our existing arable land would be converted to grow crops solely for biogasoline. This could decrease the amount of land used to farm food for human consumption and may decrease overall feedstock. This would cause an increase in overall food cost. [13]

While there may be some problems facing the economic viability of biogasoline, the partnership between Royal Dutch Shell and Virent Energy Systems, Inc., a bioscience firm based in Madison, WI, to further research biogasoline is an encouraging sign for biogasoline’s future. [14] In addition, many nations are enacting policies that increase the use of biogasoline within the country to help curb the cost of fossil fuels and create more energy independence. [14] Current efforts by the partnership are focused on improving the technology and making it available for large-scale production. [14]

See also

Related Research Articles

Biofuel Type of biological fuel produced from biomass from which energy is derived

Biofuel is fuel that is produced through contemporary processes from biomass, rather than by the very slow geological processes involved in the formation of fossil fuels, such as oil. Since biomass technically can be used as a fuel directly, some people use the terms biomass and biofuel interchangeably. More often than not, however, the word biomass simply denotes the biological raw material the fuel is made of, or some form of thermally/chemically altered solid end product, like torrefied pellets or briquettes.

Ethanol fuel One type of biofuel

Ethanol fuel is ethyl alcohol, the same type of alcohol found in alcoholic beverages, used as fuel. It is most often used as a motor fuel, mainly as a biofuel additive for gasoline. The first production car running entirely on ethanol was the Fiat 147, introduced in 1978 in Brazil by Fiat. Ethanol is commonly made from biomass such as corn or sugarcane. World ethanol production for transport fuel tripled between 2000 and 2007 from 17×109 liters (4.5×109 U.S. gal; 3.7×109 imp gal) to more than 52×109 liters (1.4×1010 U.S. gal; 1.1×1010 imp gal). From 2007 to 2008, the share of ethanol in global gasoline type fuel use increased from 3.7% to 5.4%. In 2011 worldwide ethanol fuel production reached 8.46×1010 liters (2.23×1010 U.S. gal; 1.86×1010 imp gal) with the United States of America and Brazil being the top producers, accounting for 62.2% and 25% of global production, respectively. US ethanol production reached 57.54×109 liters (1.520×1010 U.S. gal; 1.266×1010 imp gal) in 2017–04.

Cellulosic ethanol is ethanol produced from cellulose rather than from the plant's seeds or fruit. It is a biofuel produced from grasses, wood, algae, or other plants. The fibrous parts of the plants are mostly inedible to animals, including humans, except for Ruminants and animals that rely on hindgut fermentation.

The methanol economy is a suggested future economy in which methanol and dimethyl ether replace fossil fuels as a means of energy storage, ground transportation fuel, and raw material for synthetic hydrocarbons and their products. It offers an alternative to the proposed hydrogen economy or ethanol economy.

Biomass to liquid is a multi-step process of producing synthetic hydrocarbon fuels made from biomass via a thermochemical route.

Alcohol fuel

Various alcohols are used as fuel for internal combustion engines. The first four aliphatic alcohols are of interest as fuels because they can be synthesized chemically or biologically, and they have characteristics which allow them to be used in internal combustion engines. The general chemical formula for alcohol fuel is CnH2n+1OH.

Pyrolysis oil, sometimes also known as bio-crude or bio-oil, is a synthetic fuel under investigation as substitute for petroleum. It is obtained by heating dried biomass without oxygen in a reactor at a temperature of about 500 °C with subsequent cooling. Pyrolysis oil is a kind of tar and normally contains levels of oxygen too high to be considered a pure hydrocarbon. This high oxygen content results in non-volatility, corrosiveness, immiscibility with fossil fuels, thermal instability, and a tendency to polymerize when exposed to air. As such, it is distinctly different from petroleum products. Removing oxygen from bio-oil or nitrogen from algal bio-oil is known as upgrading.

The United States produces mainly biodiesel and ethanol fuel, which uses corn as the main feedstock. The US is the world's largest producer of ethanol, having produced nearly 16 billion gallons in 2017 alone. The United States, together with Brazil accounted for 85 percent of all ethanol production, with total world production of 27.05 billion gallons. Biodiesel is commercially available in most oilseed-producing states. As of 2005, it was somewhat more expensive than fossil diesel, though it is still commonly produced in relatively small quantities.

Butanol fuel Fuel for internal combustion engines

Butanol may be used as a fuel in an internal combustion engine. It is more similar to gasoline than it is to ethanol. A C4-hydrocarbon, butanol is a drop-in fuel and thus works in vehicles designed for use with gasoline without modification. It can be produced from biomass as well as fossil fuels. Both biobutanol and petrobutanol have the same chemical properties. Butanol from biomass is called biobutanol.

Renewable fuels are fuels produced from renewable resources. Examples include: biofuels and Hydrogen fuel. This is in contrast to non-renewable fuels such as natural gas, LPG (propane), petroleum and other fossil fuels and nuclear energy. Renewable fuels can include fuels that are synthesized from renewable energy sources, such as wind and solar. Renewable fuels have gained in popularity due to their sustainability, low contributions to the carbon cycle, and in some cases lower amounts of greenhouse gases. The geo-political ramifications of these fuels are also of interest, particularly to industrialized economies which desire independence from Middle Eastern oil.

Biofuel in Australia

Biofuel is fuel that is produced from organic matter (biomass), including plant materials and animal waste. It is considered a renewable source of energy that can assist in reducing carbon emissions. The two main types of biofuel currently being produced in Australia are biodiesel and bioethanol, used as replacements for diesel and petrol (gasoline) respectively. As of 2017 Australia is a relatively small producer of biofuels, accounting for 0.2% of world bioethanol production and 0.1% of world biodiesel production.

Cellulosic ethanol commercialization involves converting cellulose-containing organic matter into cellulosic ethanol for use as a biofuel. The shift from food crop feedstocks to waste residues and native grasses offers potential opportunities for farmers, biotechnology firms, project developers and investors.

Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.

Algae fuel Use of algae as a source of energy rich oils

Algae fuel, algal biofuel, or algal oil is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Also, algae fuels are an alternative to commonly known biofuel sources, such as corn and sugarcane. When made from seaweed (macroalgae) it can be known as seaweed fuel or seaweed oil.

There are various social, economic, environmental and technical issues with biofuel production and use, which have been discussed in the popular media and scientific journals. These include: the effect of moderating oil prices, the "food vs fuel" debate, poverty reduction potential, carbon emissions levels, sustainable biofuel production, deforestation and soil erosion, loss of biodiversity, effect on water resources, the possible modifications necessary to run the engine on biofuel, as well as energy balance and efficiency. The International Resource Panel, which provides independent scientific assessments and expert advice on a variety of resource-related themes, assessed the issues relating to biofuel use in its first report Towards sustainable production and use of resources: Assessing Biofuels. In it, it outlined the wider and interrelated factors that need to be considered when deciding on the relative merits of pursuing one biofuel over another. It concluded that not all biofuels perform equally in terms of their effect on climate, energy security and ecosystems, and suggested that environmental and social effects need to be assessed throughout the entire life-cycle.

Biofuels by region biofuel prevalence

The use of biofuels varies by region. The world leaders in biofuel development and use are Brazil, United States, France, Sweden and Germany.

Gevo U.S. chemical company

Gevo, Inc. is a renewable chemicals and advanced biofuels company headquartered in unincorporated Douglas County, Colorado in the Denver-Aurora metropolitan area. The company develops bio-based alternatives to petroleum-based products using a combination of biotechnology and classical chemistry. Gevo converts renewable raw materials into isobutanol and renewable hydrocarbons that Gevo believes can be directly integrated on a “drop in” basis into existing fuel and chemical products. Gevo's investors include Burrill & Company, Khosla Ventures, Lanxess, Osage University Partners, Total, and Virgin Green Fund, among others.

United States policy in regard to biofuels, such as ethanol fuel and biodiesel, began in the early 1990s as the government began looking more intensely at biofuels as a way to reduce dependence on foreign oil and increase the nation's overall sustainability. Since then, biofuel policies have been refined, focused on getting the most efficient fuels commercially available, creating fuels that can compete with petroleum-based fuels, and ensuring that the agricultural industry can support and sustain the use of biofuels.

Renewable hydrocarbon fuels via decarboxylation/decarbonylation. With an increasing demand for renewable fuels, extensive research is under way on the utilization of biomass as feedstock for the production of liquid transportation fuels. Using biomass is an attractive alternative, since biomass removes carbon dioxide from the atmosphere as it grows through photosynthesis, thus closing the carbon cycle and making biofuels carbon neutral when certain conditions are met. First generation biofuels such as biodiesel have important drawbacks, as they are normally derived from edible feedstock and are not fully compatible with standard diesel engines. Given that the majority of the problems associated with these fuels stem from their high oxygen content, methods to deoxygenate biomass-derived oils are currently being pursued. The ultimate goal is to convert inedible biomass feeds into hydrocarbon biofuels fully compatible with existing infrastructure. These so-called second generation biofuels can be used as drop-in substitutes for traditional petroleum-derived hydrocarbon fuels.

References

  1. LaMonica, Martin (January 14, 2008). "New energy act to fuel flow of 'biogasoline'". CNET. CBS Interactive Inc.
  2. "Turning Sugar into Gasoline". BGT Biogasoline. 2006.
  3. "Biogasoline - Definition, Glossary, Details". Oilgea. Retrieved 1 December 2011.
  4. Ondrey, Gerald (May 2010). "This new process makes biogasoline from carbohydrates". Chemical Engineering.
  5. "BioForming". Virent Energy Systems Inc. 2011.
  6. Coxworth, Ben (February 6, 2014). "Biogasoline could be joining biodiesel at the pumps". New Atlas. Gizmag Pty Ltd.
  7. DeLung, Joshua. "Turning Leftover Trees into Biogasoline". Energy.gov. United States Government. Retrieved 1 December 2011.
  8. "Hybrid Processing Program". Iowa State University Website. Iowa State University. Archived from the original on 10 December 2012. Retrieved 1 December 2011.
  9. "Virent and Shell Start World's First Biogasoline Production Plant". Virent Energy Systems Inc. March 23, 2010. Archived from the original on 25 June 2016. Retrieved 1 December 2011.
  10. Aylot, Matthew (24 September 2010). "Forget palm oil and soya, microalgae is the next big biofuel source". The Ecologist. Retrieved 2011-11-22.
  11. Thom, Lindsay. "Biofuels, Bioproducts, and Biorefining". bcic.ca.Missing or empty |url= (help)
  12. Grimley, Chris. "Algae Case Study". Nanostring Technology.Missing or empty |url= (help)
  13. 1 2 Vnokurov, V. A.; A.V. Barkov; L. M. Krasnopol'skya; E.S. Mortikov (2 November 2010). "CURRENT PROBLEMS. Alternative Fuels Technology". Chemistry and Technology of Fuels and Oils. 46 (2): 75–78. doi:10.1007/s10553-010-0190-y.
  14. 1 2 3 Clanton, Brett (April 3, 2008). "Biogasoline: A Pile of Potential". Houston Chronicle. Houston.

Research institutes