Energy independence is independence or autarky regarding energy resources, energy supply and/or energy generation by the energy industry.
Energy dependence, in general, refers to mankind's general dependence on either primary or secondary energy for energy consumption (fuel, transport, automation, etc.). In a narrower sense, it may describe the dependence of one country on energy resources from another country.
Energy dependency shows the extent to which an economy relies upon imports in order to meet its energy needs. The indicator is calculated as net imports divided by the sum of gross inland energy consumption plus bunkers.
Energy dependence has been identified as one of several factors (energy sources diversification, energy suppliers diversification, energy sources fungibility, energy transport, market liquidity, energy resources, political stability, energy intensity, GDP) negatively contributing to energy security. [2] Generally, a higher level of energy dependence is associated with higher risk, because of the possible interference of trade regulations, international armed conflicts, terrorist attacks, etc. [3] [4] [5]
![]() | This section needs expansion. You can help by adding to it. (November 2021) |
A study found that transition from fossil fuels to renewable energy systems reduces risks from mining, trade and political dependence because renewable energy systems don't need fuel – they depend on trade only for the acquisition of materials and components during construction. [6] Renewable energy is found to be an efficient way to ensure energy independence and security. It also supports the transition to a low carbon economy and society. [7] Ways to manage the variability of renewable energy – such as little solar power on cloudy days – include dispatchable generation and smart grids. Bioenergy hydropower and hydrogen energy could be used for such purposes alongside storage-options like batteries. [8]
Several countries are conducting extensive research and development programs around renewable energy sources like solar, wind, water, and nuclear energy in hopes to achieve energy independence. However, because solar, wind, and water cannot always be derived as an energy source, nuclear energy is seen as a near-universal alternative that is efficient, safe, and combats the climate crisis.
Under the conceived notion that the expansion of and investment in nuclear energy power plants is a key step in the goal of achieving energy independence many countries, and companies, are supporting nuclear power research efforts.
The International Thermonuclear Experimental Reactor (ITER), located in France, is an experimental tokamak nuclear fusion reactor that is a collaboration between 35 countries. This project was launched in 2007 and still under construction today.
In 2020, the U.S. Department of Energy awarded $160 million in initial funding to TerraPower and X-energy to build advanced nuclear reactors that will be affordable to construct and operate. Both companies are expected to produce their product within 7 years. [9]
In that same tone, there are several other companies and institutions across the globe that are gaining attention from their nuclear power innovations and research efforts. Commonwealth Fusion Systems, founded in 2018, is focusing on the development of nuclear fusion. [10] In 2020, The Energy Impact Center launched its OPEN100 project, the world's first open-source blueprint for the design, construction, and financing of nuclear power plants. [11] General Fusion is a Canadian company currently developing a fusion power device, based on magnetized target fusion. [10] Flibe Energy aims to tackle the future of nuclear energy by researching and developing the liquid fluoride thorium reactor (LFTR). [10]
In addition, safe and cost-effective storage of nuclear waste in the Waste Isolation Pilot Plant and full version of this underground storage in New Mexico is important for the nuclear fuel cycle.
Energy independence is being attempted by large or resource-rich and economically-strong countries like the United States, [12] [13] Russia, [14] China [15] [16] and the Near [17] and Middle East, [18] [19] but it is so far an idealized status that at present can be only approximated by non-sustainable exploitation of a country's (non-renewable) natural resources. [20] [21] [22] [23] Another factor in reducing dependence is the addition of renewable energy sources to the energy mix. Usually, a country relies on local and global energy renewable and non-renewable resources, a mixed-model solution that presumes various energy sources and modes of energy transfer between countries like electric power transmission, oil transport (oil and gas pipelines and tankers), etc. The European dependence on Russian energy is a good example because Russia is Europe's main supplier of hard coal, crude oil, and natural gas. [24] Oil wars in and between the Middle East, Russia, and the United States that have made markets unpredictable and volatile are also a great example as to why energy advocates and experts suggest countries invest in energy independence. The international dependence of energy resources exposes countries to vulnerability in every aspect of life — countries rely on energy for food, infrastructure, security, transportation, and more.
In the Scottish Independence debate, energy independence is a key argument in favour of Scottish exit. Since the discovery of large oil fields, pro-independence proponents have used the tagline "It's Scotland's Oil" in campaigns. Scottish oil and gas production constitutes 82% of the UK's oil and gas. [25] Accordingly, economic and political independence would be followed by high-stakes energy agreements, wherein some argue the fiscal power would lie with Scotland. [26] Political independence would supposedly return decisions about the future of energy to the Scottish people, who are more likely to vote in favour of renewable energy on Scottish soil. [27] Therefore, less reliance on international gas supplies, and a focus on low-emission local energy is a key tenet of the "Building a New Scotland" prospectus promoting Scottish Independence. [28]
Nuclear power is the use of nuclear reactions to produce electricity. Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. Presently, the vast majority of electricity from nuclear power is produced by nuclear fission of uranium and plutonium in nuclear power plants. Nuclear decay processes are used in niche applications such as radioisotope thermoelectric generators in some space probes such as Voyager 2. Reactors producing controlled fusion power have been operated since 1958 but have yet to generate net power and are not expected to be commercially available in the near future.
A nuclear power plant (NPP), also known as a nuclear power station (NPS), nuclear generating station (NGS) or atomic power station (APS) is a thermal power station in which the heat source is a nuclear reactor. As is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. As of September 2023, the International Atomic Energy Agency reported that there were 410 nuclear power reactors in operation in 32 countries around the world, and 57 nuclear power reactors under construction.
A non-renewable resource is a natural resource that cannot be readily replaced by natural means at a pace quick enough to keep up with consumption. An example is carbon-based fossil fuels. The original organic matter, with the aid of heat and pressure, becomes a fuel such as oil or gas. Earth minerals and metal ores, fossil fuels and groundwater in certain aquifers are all considered non-renewable resources, though individual elements are always conserved.
Energy development is the field of activities focused on obtaining sources of energy from natural resources. These activities include the production of renewable, nuclear, and fossil fuel derived sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.
Alternative fuels, also known as non-conventional and advanced fuels, are fuels derived from sources other than petroleum. Alternative fuels include gaseous fossil fuels like propane, natural gas, methane, and ammonia; biofuels like biodiesel, bioalcohol, and refuse-derived fuel; and other renewable fuels like hydrogen and electricity.
A nuclear power phase-out is the discontinuation of usage of nuclear power for energy production. Often initiated because of concerns about nuclear power, phase-outs usually include shutting down nuclear power plants and looking towards fossil fuels and renewable energy. Three nuclear accidents have influenced the discontinuation of nuclear power: the 1979 Three Mile Island partial nuclear meltdown in the United States, the 1986 Chernobyl disaster in the USSR, and the 2011 Fukushima nuclear disaster in Japan.
Japan is a major consumer of energy, ranking fifth in the world by primary energy use. Fossil fuels accounted for 88% of Japan's primary energy in 2019. Japan imports most of its energy due to scarce domestic resources. As of 2022, the country imports 97% of its oil and is the largest liquefied natural gas (LNG) importer globally.
Total energy consumption in the United Kingdom was 142.0 million tonnes of oil equivalent in 2019. In 2014, the UK had an energy consumption per capita of 2.78 tonnes of oil equivalent compared to a world average of 1.92 tonnes of oil equivalent. Demand for electricity in 2023 was 29.6 GW on average, supplied through 235 TWh of UK-based generation and 24 TWh of energy imports.
World energy resources are the estimated maximum capacity for energy production given all available resources on Earth. They can be divided by type into fossil fuel, nuclear fuel and renewable resources.
United States energy independence is the concept of eliminating or substantially reducing import of petroleum to satisfy the nation's need for energy. Some proposals for achieving energy independence would permit imports from the neighboring nations of Canada and Mexico, in which case it would be called North American energy independence. Energy independence is espoused by those who want to leave the US unaffected by global energy supply disruptions and would restrict reliance upon politically unstable states for its energy security.
Energy security is the association between national security and the availability of natural resources for energy consumption. Access to cheaper energy has become essential to the functioning of modern economies. However, the uneven distribution of energy supplies among countries has led to significant vulnerabilities. International energy relations have contributed to the globalization of the world leading to energy security and energy vulnerability at the same time.
Low-carbon electricity or low-carbon power is electricity produced with substantially lower greenhouse gas emissions over the entire lifecycle than power generation using fossil fuels. The energy transition to low-carbon power is one of the most important actions required to limit climate change.
Energy in Germany is obtained primarily from fossil fuels, accounting for 77.6% of total energy consumption in 2023, followed by renewables at 19.6%, and 0.7% nuclear power. On 15 April 2023, the three remaining German nuclear reactors were taken offline, completing the country's nuclear phase-out plan. As of 2023, German primary energy consumption amounted to 10,791 Petajoule, making it the ninth largest global primary energy consumer. Total consumption has been steadily declining from its peak of 14,845 Petajoule in 2006. In 2023 Germany's gross electricity production reached 508.1 TWh, down from 569.2 TWh in 2022 and 631.4 TWh in 2013.
The nuclear power debate is a long-running controversy about the risks and benefits of using nuclear reactors to generate electricity for civilian purposes. The debate about nuclear power peaked during the 1970s and 1980s, as more and more reactors were built and came online, and "reached an intensity unprecedented in the history of technology controversies" in some countries. In the 2010s, with growing public awareness about climate change and the critical role that carbon dioxide and methane emissions plays in causing the heating of the Earth's atmosphere, there was a resurgence in the intensity of the nuclear power debate.
Whether nuclear power should be considered a form of renewable energy is an ongoing subject of debate. Statutory definitions of renewable energy usually exclude many present nuclear energy technologies, with the notable exception of the state of Utah. Dictionary-sourced definitions of renewable energy technologies often omit or explicitly exclude mention of nuclear energy sources, with an exception made for the natural nuclear decay heat generated within the Earth.
The energy mix is a group of different primary energy sources from which secondary energy for direct use - such as electricity - is produced. Energy mix refers to all direct uses of energy, such as transportation and housing, and should not be confused with power generation mix, which refers only to generation of electricity, as electricity only accounts for 20 % of the world's final energy consumption.
Energy in Libya primarily revolves around the production, consumption, import, and export of energy, with a significant focus on the petroleum industry, which serves as the backbone of the Libyan economy. As of 2021, Libya is recognized as the seventh-largest crude oil producer in OPEC and ranks third in total petroleum liquids production in Africa. The country holds 3% of the world's proven oil reserves and 39% of Africa's, marking it as a key player in the global energy sector. Despite its abundant resources, the energy industry in Libya has faced significant challenges due to political instability following the civil war that began in 2011. These challenges have led to frequent disruptions in oil production and exports, directly impacting the national economy and its contributions to the global oil market. The sector's future is closely tied to the resolution of political conflicts and the effective management of its vast hydrocarbon resources.
Total primary energy supply (TPES) in Slovenia was 6.80 Mtoe in 2019. In the same year, electricity production was 16.1 TWh, consumption was 14.9 TWh.
Energy diplomacy is a form of diplomacy, and a subfield of international relations. It is closely related to its principal, foreign policy, and to overall national security, specifically energy security. Energy diplomacy began in the first half of the twentieth century and emerged as a term during the second oil crisis as a means of describing OPEC's actions. It has since mainly focused on the securitization of energy supplies, primarily fossil fuels, but also nuclear energy and increasingly sustainable energy, on a country or bloc basis.
{{cite book}}
: |website=
ignored (help)