Botryococcus braunii

Last updated

Botryococcus braunii
Botryococcus braunii.jpg
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): Viridiplantae
Division: Chlorophyta
Class: Trebouxiophyceae
Order: Trebouxiales
Family: Botryococcaceae
Genus: Botryococcus
Species:
B. braunii
Binomial name
Botryococcus braunii

Botryococcus braunii is a green, pyramid-shaped planktonic microalga that is of potentially great importance in the field of biotechnology. Colonies held together by a lipid biofilm matrix can be found in temperate or tropical oligotrophic lakes and estuaries, and will bloom when in the presence of elevated levels of dissolved inorganic phosphorus. The species is notable for its ability to produce high amounts of hydrocarbons, especially oils in the form of Triterpenes, that are typically around 30–40% of their dry weight. [1] Compared to other green alge species it has a relatively thick cell wall that is accumulated from previous cellular divisions; making extraction of cytoplasmic components rather difficult. Much of the useful hydrocarbon oil is outside of the cell. [2]

Contents

Optimal growth environment

Botryococcus braunii has been shown to grow best at a temperature of 23 °C, a light intensity of 60 W/m2, with a light period of 12 hours per day, and a salinity of 0.15 molar NaCl. [3] However, this was the results of testing with one strain, and others certainly vary to some degree. In the laboratory, B. braunii is commonly grown in cultures of Chu 13 medium .

Toxic blooms and competition

Blooms of Botryococcus braunii have been shown to be toxic to other micro-organisms and fishes. The cause of the blooms and their subsequent damage to the populations of other organisms has been studied. The exudate of Botryococcus braunii in the form of free fatty acids has been identified as the cause. A higher alkalinity changes these free fatty acids into a form which is more toxic to other species, thus causing Botryococcus braunii to become more dominant. Higher alkalinity often occurs when ashes from burned areas are washed into a body of water. While the dominance of Botryococcus braunii can be seen as damaging to the environmental diversity of a body of water, the knowledge of how it gains and maintains dominance is useful to those who intend to grow ponds of it as a fuel crop.[ citation needed ]

Biofuel applications of Botryococcus oils

The practice of farming cultivating is known as algaculture. Botryococcus braunii has great potential for algaculture because of the hydrocarbons it produces, which can be chemically converted into fuels. Up to 86% of the dry weight of Botryococcus braunii can be long-chain hydrocarbons. [4] The vast majority of these hydrocarbons are botryocuccus oils: botryococcenes, alkadienes and alkatrienes. Transesterification can NOT be used to make biodiesel from Botryococcus oils.[ citation needed ] This is because these oils are not vegetable oils in the common meaning, in which they are fatty acid triglycerides. While Botryococcus oils are oils of vegetable origin, they are inedible and chemically very different, being triterpenes, and lack the free oxygen atom needed for transesterification. Botryococcus oils can be used as feedstock for hydrocracking in an oil refinery to produce octane (gasoline, a.k.a. petrol), kerosene, and diesel. [5] (see vegetable oil refining). Botryococcenes are preferred over alkadienes and alkatrienes for hydrocracking as botryococcenes will likely be transformed into a fuel with a higher octane rating.

Oils

Three major races of Botryococcus braunii are known, and they are distinguished by the structure of their oils. Botryococcenes are unbranched isoprenoid triterpenes having the formula CnH2n-10. The A race produces alkadienes and alkatrienes (derivatives of fatty acids) wherein n is an odd number 23 through 31. The B race produces botryococcenes wherein n is in the range 30 through 37. Botryococcenes are the biofuels of choice for hydrocracking to gasoline-type hydrocarbons. The "L" strain makes an oil not formed by other strains of Botryococcus braunii. Within this major classification, various strains of Botryococcus will differ in the precise structure and concentrations of the constituent hydrocarbons oils. [6]

According to page 30 on Aquatic Species Program report, [7] the A-strain of Botryococcus braunii did not function well as a feedstock for lipid-based fuel production due to its slow growth (one doubling every 72 hours). However, subsequent research by Qin showed that the doubling time could be reduced to 48 hours in its optimal growth environment. [3] In view of findings by Frenz, [6] the doubling times may not be as important as the method of hydrocarbon harvest. The Aquatic Species Program also found A-strain Botryococcus braunii oil to be less than ideal, having most of its lipids as C29 to C34 aliphatic hydrocarbons, and less abundance of C18 fatty acids. This evaluation of the oils of Botryococcus braunii was done in relation to their suitability for transesterification (i.e. creating biodiesel), which was the focus of the Aquatic Species Program at the time Botryococcus braunii was evaluated. The Aquatic Species Program did not study oils of Botryococcus braunii for their suitability in hydrocracking, as some subsequent studies have done on the "B" race.

Hydrocarbon Oil Constituents of Botryococcus braunii [5]
Compound % mass
Isobotryococcene4%
Botryococcene9%
C34H5811%
C36H62 (isomer A)34%
C36H62 (isomer B)4%
C37H6420%
Other hydrocarbons18%

Extraction of oils

Compared to other green algae species, Botryococcus braunii has a relatively thick cell wall that is accumulated from previous cellular divisions; making extraction of cytoplasmic components rather difficult. Much of the useful hydrocarbon oil is outside of the cell, [2] acting as a biofilm to aggregate individual cells into colonies. The best method of separating the oils from the cells with minimal damage to the cells has long been sought. For some time, it has been known that hexane can perform this function. However, an electrical method may be cleaner and better overall. Electric fields have been applied in short pulses to extract hydrocarbons from other species of microalgae by weakening the cell walls. These pulses have been microseconds to milliseconds in length. In April 2017 it was reported [8] researchers at Kumamoto University in Japan have used shorter, nanosecond long pulses to target the extracellular matrix of Botryococcus braunii. They found the electric method to be less costly and less damaging to the cells than other methods. The Kunamoto scientists found that when the pulses are applied ten times per second, the optimal field strength was 50 kilovolts per centimeter and the optimal energy applied to be 55.6 Joules per milliliter of Botryococcus braunii matrix. Polysaccharides are also extracted from the matrix and must be separated from the oils.

Research

Due to the burgeoning interest in alternatives to fossil fuels, research on Botryococcus braunii has increased. In April 2017, Dr. Tim Devarenne of Texas A&M University (TAMU) announced the DNA sequencing of the genome of Bb had been completed. [9] A year earlier, in 2016, Dr. Devarenne's team at TAMU discovered the enzyme responsible for creating the Bb oil, known as lycopadiene. The enzyme is known as lycopadiene synthase, or LOS, is capable of making several types of oils. Devarenne suggested that the LOS gene might be might be implanted in other algae with faster metabolism, in order to speed up production of the oil. [10]

Potentially useful strains

This heading is a collection of strains of note because of their potential utility. Some of these strains are patented as a result of active DNA modification, while, others are from traditional selection processes.

In 1988, UCBerkeley was granted US Plant Patent 6169 for Botryococcus braunii variety Showa, developed by UC Berkeley scientist Arthur Nonomura, in the Melvin Calvin Laboratory as part of the Nobel laureate's groundbreaking interdisciplinary program for the development of renewable transport fuels. The proprietary variety was notable, says the patent application, because of its highly reproducible botryococcenes hydrocarbon content comprising 20% of the dry weight of "Showa." It is clear that Showa was borne out as the top source of hydrocarbons of its time. The patent expired in April 2008.

In May 2006, Nonomura filed an international patent application disclosing novel growth and harvesting processes for the Chlorophyta. [11] A separate patent for plants is also filed on Botryococcus braunii variety Ninsei that exhibits the feature of extracolonial secretion of it botryococcenoids that can be processed in existing gasoline refineries to transport fuels.

In August 2011, variety Enomoto was announced by IHI NeoG Algae LLC. [12] It has "...the highest yield for this fuel production over all the algae that have been discovered in the world", with a claimed monthly growth a thousand times higher than normal strains Botryococcus braunii. It is additionally said to be very robust, [13] presumably meaning it could be grown in an open environment (in ponds, instead of photobioreactors).

See also

Related Research Articles

<span class="mw-page-title-main">Biofuel</span> Type of biological fuel produced from biomass from which energy is derived

Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels, such as oil. Biofuel can be produced from plants or from agricultural, domestic or industrial biowaste. The climate change mitigation potential of biofuel varies considerably, from emission levels comparable to fossil fuels in some scenarios to negative emissions in others. Biofuels are mostly used for transportation, but can also be used for heating and electricity. Biofuels are regarded as a renewable energy source.

<span class="mw-page-title-main">Biodiesel</span> Fuel made from vegetable oils or animal fats

Biodiesel is a form of diesel fuel derived from plants or animals and consisting of long-chain fatty acid esters. It is typically made by chemically reacting lipids such as animal fat (tallow), soybean oil, or some other vegetable oil with an alcohol, producing a methyl, ethyl or propyl ester by the process of transesterification.

Biodiesel production is the process of producing the biofuel, biodiesel, through the chemical reactions of transesterification and esterification. This involves vegetable or animal fats and oils being reacted with short-chain alcohols. The alcohols used should be of low molecular weight. Ethanol is the most used because of its low cost, however, greater conversions into biodiesel can be reached using methanol. Although the transesterification reaction can be catalyzed by either acids or bases, the base-catalyzed reaction is more common. This path has lower reaction times and catalyst cost than those acid catalysis. However, alkaline catalysis has the disadvantage of high sensitivity to both water and free fatty acids present in the oils.August 10th is international biodiesel day

<span class="mw-page-title-main">Saponification value</span> Milligrams of a base required to saponify 1g of fat

Saponification value or saponification number represents the number of milligrams of potassium hydroxide (KOH) or sodium hydroxide (NaOH) required to saponify one gram of fat under the conditions specified. It is a measure of the average molecular weight of all the fatty acids present in the sample in form of triglycerides. The higher the saponification value, the lower the fatty acids average length, the lighter the mean molecular weight of triglycerides and vice versa. Practically, fats or oils with high saponification value are more suitable for soap making.

Fatty acid methyl esters (FAME) are a type of fatty acid ester that are derived by transesterification of fats with methanol. The molecules in biodiesel are primarily FAME, usually obtained from vegetable oils by transesterification. They are used to produce detergents and biodiesel. FAME are typically produced by an alkali-catalyzed reaction between fats and methanol in the presence of base such as sodium hydroxide, sodium methoxide or potassium hydroxide. One of the reasons for FAME use in biodiesel instead of free fatty acids is to nullify any corrosion that free fatty acids would cause to the metals of engines, production facilities and so forth. Free fatty acids are only mildly acidic, but in time can cause cumulative corrosion unlike their esters. As an improved quality, FAMEs also usually have about 12-15 units higher cetane number than their unesterified counterparts.

In chemistry, acid value is a number used to quantify the acidity of a given chemical substance. It is the quantity of base, expressed as milligrams of KOH required to neutralize the acidic constituents in 1 gram of a sample.

The Aquatic Species Program was a research program in the United States launched in 1978 by President Jimmy Carter and was funded by the United States Department of Energy, which over the course of nearly two decades looked into the production of energy using algae. Initially, the funding of the Aquatic Species Program was to develop renewable fuel for transportation. Later, the program focused on producing bio-diesel from algae. The research program was discontinued in 1996. The research staff compiled their work and conclusions into a 1998 report.

<i>Scenedesmus</i> Genus of green algae

Scenedesmus is a genus of green algae, in the class Chlorophyceae. They are colonial and non-motile. They are one of the most common components of phytoplankton in freshwater habitats worldwide.

<i>Choricystis</i> Genus of algae

Choricystis is a genus of green algae in the class Trebouxiophyceae, considered a characteristic picophytoplankton in freshwater ecosystems. Choricystis, especially the type species Choricystis minor, has been proposed as an effective source of fatty acids for biofuels. Choricystis algacultures have been shown to survive on wastewater. In particular, Choricystis has been proposed as a biological water treatment system for industrial waste produced by the processing of dairy goods.

<span class="mw-page-title-main">Algae fuel</span> Use of algae as a source of energy rich oils

Algae fuel, algal biofuel, or algal oil is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Also, algae fuels are an alternative to commonly known biofuel sources, such as corn and sugarcane. When made from seaweed (macroalgae) it can be known as seaweed fuel or seaweed oil.

Hydrotreated vegetable oil (HVO) is a biofuel made by the hydrocracking or hydrogenation of vegetable oil. Hydrocracking breaks big molecules into smaller ones using hydrogen while hydrogenation adds hydrogen to molecules. These methods can be used to create substitutes for gasoline, diesel, propane, kerosene and other chemical feedstock. Diesel fuel produced from these sources is known as green diesel or renewable diesel.

Botryococcenes are the major oil constituents of the green algae Botryococcus braunii. The hydrocarbons these species produce can be chemically converted into fuels.

<span class="mw-page-title-main">Chicken fat</span> Animal fat from domestic chicken

Chicken fat is fat obtained from chicken rendering and processing. Of the many animal-sourced substances, chicken fat is noted for being high in linoleic acid, an omega-6 fatty acid. Linoleic acid levels are between 17.9% and 22.8%. It is a common flavoring, additive or main component of chicken soup. It is often used in pet foods, and has been used in the production of biodiesel. One method of converting chicken fat into biodiesel is through a process called supercritical methanol treatment.

<i>Nannochloropsis</i> Genus of algae

Nannochloropsis is a genus of algae comprising six known species. The genus in the current taxonomic classification was first termed by Hibberd (1981). The species have mostly been known from the marine environment but also occur in fresh and brackish water. All of the species are small, nonmotile spheres which do not express any distinct morphological features that can be distinguished by either light or electron microscopy. The characterisation is mostly done by rbcL gene and 18S rRNA sequence analysis.

Algae fuel in the United States, as with other countries, is under study as a source of biofuel.

<i>Nannochloropsis</i> and biofuels

Nannochloropsis is a genus of alga within the heterokont line of eukaryotes, that is being investigated for biofuel production. One marine Nannochloropsis species has been shown to be suitable for algal biofuel production due to its ease of growth and high oil content, mainly unsaturated fatty acids and a significant percentage of palmitic acid. It also contains enough unsaturated fatty acid linolenic acid and polyunsaturated acid for a quality biodiesel.

Single cell oil, also known as Microbial oil consists of the intracellular storage lipids, triacyglycerols. It is similar to vegetable oil, another biologically produced oil. They are produced by oleaginous microorganisms, which is the term for those bacteria, molds, algae and yeast, which can accumulate 20% to 80% lipids of their biomass. The accumulation of lipids take place by the end of logarithmic phase and continues during station phase until carbon source begins to reduce with nutrition limitation.

<span class="mw-page-title-main">Thraustochytrids</span>

Thraustochytrids are single-celled saprotrophic eukaryotes (decomposers) that are widely distributed in marine ecosystems, and which secrete enzymes including, but not limited to amylases, proteases, phosphatases. They are most abundant in regions with high amounts of detritus and decaying plant material. They play an important ecological role in mangroves, where they aid in nutrient cycling by decomposing decaying matter. Additionally, they contribute significantly to the synthesis of omega-3 polyunsaturated fatty acids (PUFAs): docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA), which are essential fatty acids for the growth and reproduction of crustaceans. Thraustochytrids are members of the class Labyrinthulea, a group of protists that had previously been incorrectly categorized as fungi due to their similar appearance and lifestyle. With the advent of DNA sequencing technology, labyrinthulomycetes were appropriately placed with other stramenopiles and subsequently categorized as a group of Labyrinthulomycetes.

An oleaginous microorganism is a type of microbe that accumulates lipid as a normal part of its metabolism. Oleaginous microbes may accumulate an array of different lipid compounds, including polyhydroxyalkanoates, triacylglycerols, and wax esters. Various microorganisms, including bacteria, fungi, and yeast, are known to accumulate lipids. These organisms are often researched for their potential use in producing fuels from waste products.

References

  1. Metzger, P.; Largeau, C. (2005). "Botryococcus braunii: a rich source for hydrocarbons and related ether lipids". Applied Microbiology and Biotechnology. 66 (25): 486–96. doi:10.1007/s00253-004-1779-z. PMID   15630516. S2CID   26975859.
  2. 1 2 Wolf, Fred R.; Nonomura, Arthur M.; Bassham, James A. (1985). "Growth and Branched Hydrocarbon Production in a Strain of Botryococcus braunii (Chlorophyta)1". Journal of Phycology. 21 (3): 388. doi:10.1111/j.0022-3646.1985.00388.x. S2CID   84950470.
  3. 1 2 Jian Qin (2005). "Bio-Hydrocarbons from Algae: Impacts of temperature, light and salinity on algae growth" (PDF). Rural Industries Research and Development Corporation, Australia. Archived from the original (PDF) on 2011-07-15. Retrieved 2010-09-11.
  4. Algal Oil Yields – Yield Data for Oil from Algae Strains, Algae Species with High Oil Yields. Oilgae.com (2009-12-02). Retrieved on 2016-11-04.
  5. 1 2 L.W. Hillen; et al. (1982). "Hydrocracking of the Oils of Botryococcus braunii to Transport Fuels". Biotechnology and Bioengineering. 24 (1): 193–205. doi:10.1002/bit.260240116. PMID   18546110. S2CID   43310427. Archived from the original on 2012-12-10.
  6. 1 2 J. Frenz; et al. (1989). "Hydrocarbon Recovery and Biocompatibility of Solvents for Extraction from Cultures of Botryococcus braunii". Biotechnology and Bioengineering. 34 (6): 755–62. doi:10.1002/bit.260340605. PMID   18588162. S2CID   20585307.
  7. Biodiesel Production from Algae. U.S. Department of Energy Aquatic Species Program
  8. "Fast, low energy, and continuous biofuel extraction from microalgae". ScienceDaily. 2017-04-28.
  9. Browne, Daniel; Devarenne, Timothy (20 April 2017). "Draft Nuclear Genome Sequence of the Liquid Hydrocarbon–Accumulating Green Microalga Botryococcus braunii Race B (Showa)". Genome Announcements. 5 (16). doi:10.1128/genomeA.01498-17. PMC   5786678 . PMID   29371352.
  10. "Enzyme discovery leads scientists further down path to pumping oil from plants". AgriLife TODAY. Texas A&M University. 6 April 2016. Retrieved 31 May 2019.
  11. Nonomura, Arthur M. (May 5, 2006) "Methods and Compositions for Growth of Hydrocarbons in Botryococcus sp." U.S. Patent 7,923,228
  12. "A new Japanese venture to pursue mass production of algae biofuel". Shimbun Denki. 2011-07-12. Archived from the original on 2011-07-13.
  13. "Formation of the Joint Venture by IHI and Neo-Morgan Laboratory for Bio-fuel production using Algae". mmdnewswire.com. Archived from the original on 2011-09-30. Retrieved 2011-08-13.