Hydrothermal liquefaction (HTL) is a thermal depolymerization process used to convert wet biomass, and other macromolecules, into crude-like oil under moderate temperature and high pressure. [1] The crude-like oil has high energy density with a lower heating value of 33.8-36.9 MJ/kg and 5-20 wt% oxygen and renewable chemicals. [2] [3] The process has also been called hydrous pyrolysis.
The reaction usually involves homogeneous and/or heterogeneous catalysts to improve the quality of products and yields. [1] Carbon and hydrogen of an organic material, such as biomass, peat or low-ranked coals (lignite) are thermo-chemically converted into hydrophobic compounds with low viscosity and high solubility. Depending on the processing conditions, the fuel can be used as produced for heavy engines, including marine and rail or upgraded to transportation fuels, [4] such as diesel, gasoline or jet-fuels.
The process may be significant in the creation of fossil fuels. [5] Simple heating without water, anhydrous pyrolysis has long been considered to take place naturally during the catagenesis of kerogens to fossil fuels. In recent decades it has been found that water under pressure causes more efficient breakdown of kerogens at lower temperatures than without it. The carbon isotope ratio of natural gas also suggests that hydrogen from water has been added during creation of the gas.
As early as the 1920s, the concept of using hot water and alkali catalysts to produce oil out of biomass was proposed. [6] In 1939, U.S. patent 2,177,557, [7] described a two-stage process in which a mixture of water, wood chips, and calcium hydroxide is heated in the first stage at temperatures in a range of 220 to 360 °C (428 to 680 °F), with the pressure "higher than that of saturated steam at the temperature used." This produces "oils and alcohols" which are collected. The materials are then subjected in a second stage to what is called "dry distillation", which produces "oils and ketones". Temperatures and pressures for this second stage are not disclosed.
These processes were the foundation of later HTL technologies that attracted research interest especially during the 1970s oil embargo. It was around that time that a high-pressure (hydrothermal) liquefaction process was developed at the Pittsburgh Energy Research Center (PERC) and later demonstrated (at the 100 kg/h scale) at the Albany Biomass Liquefaction Experimental Facility at Albany, Oregon, US. [2] [8] In 1982, Shell Oil developed the HTU™ process in the Netherlands. [8] Other organizations that have previously demonstrated HTL of biomass include Hochschule für Angewandte Wissenschaften Hamburg, Germany, SCF Technologies in Copenhagen, Denmark, EPA’s Water Engineering Research Laboratory, Cincinnati, Ohio, USA, and Changing World Technology Inc. (CWT), Philadelphia, Pennsylvania, USA. [8] Today, technology companies such as Licella/Ignite Energy Resources (Australia), Arbios Biotech, a Licella/Canfor joint venture, Altaca Energy (Turkey), Circlia Nordic (Denmark), Steeper Energy (Denmark, Canada) continue to explore the commercialization of HTL. [9] Construction has begun in Teesside, UK, for a catalytic hydrothermal liquefaction plant that aims to process 80,000 tonnes per year of mixed plastic waste by 2022. [10]
In hydrothermal liquefaction processes, long carbon chain molecules in biomass are thermally cracked and oxygen is removed in the form of H2O (dehydration) and CO2 (decarboxylation). These reactions result in the production of high H/C ratio bio-oil. Simplified descriptions of dehydration and decarboxylation reactions can be found in the literature (e.g. Asghari and Yoshida (2006) [11] and Snåre et al. (2007). [12]
Most applications of hydrothermal liquefaction operate at temperatures between 250-550 °C and high pressures of 5-25 MPa as well as catalysts for 20–60 minutes, [2] [3] although higher or lower temperatures can be used to optimize gas or liquid yields, respectively. [8] At these temperatures and pressures, the water present in the biomass becomes either subcritical or supercritical, depending on the conditions, and acts as a solvent, reactant, and catalyst to facilitate the reaction of biomass to bio-oil.
The exact conversion of biomass to bio-oil is dependent on several variables: [1]
Theoretically, any biomass can be converted into bio-oil using hydrothermal liquefaction regardless of water content, and various different biomasses have been tested, from forestry and agriculture residues, [13] sewage sludges, food process wastes, to emerging non-food biomass such as algae. [1] [6] [8] [14] The composition of cellulose, hemicellulose, protein, and lignin in the feedstock influence the yield and quality of the oil from the process.
Zhang et al., [15] at the University of Illinois, report on a hydrous pyrolysis process in which swine manure is converted to oil by heating the swine manure and water in the presence of carbon monoxide in a closed container. For that process they report that a temperatures of at least 275 °C (527 °F) is required to convert the swine manure to oil, and temperatures above about 335 °C (635 °F) reduces the amount of oil produced. The Zhang et al. process produces pressures of about 7 to 18 Mpa (1000 to 2600 psi - 69 to 178 atm), with higher temperatures producing higher pressures. Zhang et al. used a retention time of 120 minutes for the reported study, but report at higher temperatures a time of less than 30 minutes results in significant production of oil.
Barbero-López et al., [16] tested in the University of Eastern Finland the use of spent mushroom substrate and tomato plant residues as feedstock for hydrothermal liquefaction. They focused in the hydrothermal liquids produced, rich in many different constituents, and found that they are potential antifungals against several fungi causing decay on wood, but their ecotoxicity was lower than that of the commercial Cu-based wood preservative. The effectiveness of the antifungal activity of the hydrothermal liquids varied mostly due to liquid concentration and strain sensitivity, while the different feedstocks did not have such a significant effect.
A commercialized process [17] using hydrous pyrolysis (see the article Thermal depolymerization) used by Changing World Technologies, Inc. (CWT) and its subsidiary Renewable Environmental Solutions, LLC (RES) to convert turkey offal. [18] As a two-stage process, the first stage to convert the turkey offal to hydrocarbons at a temperature of 200 to 300 °C (392 to 572 °F) and a second stage to crack the oil into light hydrocarbons at a temperature of near 500 °C (932 °F). Adams et al. report only that the first stage heating is "under pressure"; Lemley, [19] in a non-technical article on the CWT process, reports that for the first stage (for conversion) a temperature of about 260 °C (500 °F) and a pressure of about 600 psi, with a time for the conversion of "usually about 15 minutes". For the second stage (cracking), Lemley reports a temperature of about 480 °C (896 °F).
Temperature plays a major role in the conversion of biomass to bio-oil. The temperature of the reaction determines the depolymerization of the biomass to bio-oil, as well as the repolymerization into char. [1] While the ideal reaction temperature is dependent on the feedstock used, temperatures above ideal lead to an increase in char formation and eventually increased gas formation, while lower than ideal temperatures reduce depolymerization and overall product yields.
Similarly to temperature, the rate of heating plays a critical role in the production of the different phase streams, due to the prevalence of secondary reactions at non-optimum heating rates. [1] Secondary reactions become dominant in heating rates that are too low, leading to the formation of char. While high heating rates are required to form liquid bio-oil, there is a threshold heating rate and temperature where liquid production is inhibited and gas production is favored in secondary reactions.
Pressure (along with temperature) determines the super- or subcritical state of solvents as well as overall reaction kinetics and the energy inputs required to yield the desirable HTL products (oil, gas, chemicals, char etc.). [1]
Hydrothermal liquefaction is a fast process, resulting in low residence times for depolymerization to occur. Typical residence times are measured in minutes (15 to 60 minutes); however, the residence time is highly dependent on the reaction conditions, including feedstock, solvent ratio and temperature. As such, optimization of the residence time is necessary to ensure a complete depolymerization without allowing further reactions to occur. [1]
While water acts as a catalyst in the reaction, other catalysts can be added to the reaction vessel to optimize the conversion. [20] Previously used catalysts include water-soluble inorganic compounds and salts, including KOH and Na2CO3, as well as transition metal catalysts using nickel, palladium, platinum and ruthenium supported on either carbon, silica or alumina. The addition of these catalysts can lead to an oil yield increase of 20% or greater, due to the catalysts converting the protein, cellulose, and hemicellulose into oil. This ability for catalysts to convert biomaterials other than fats and oils to bio-oil allows for a wider range of feedstock to be used.[ citation needed ]
Biofuels that are produced through hydrothermal liquefaction are carbon neutral, meaning that there are no net carbon emissions produced when burning the biofuel. The plant materials used to produce bio-oils use photosynthesis to grow, and as such consume carbon dioxide from the atmosphere. The burning of the biofuels produced releases carbon dioxide into the atmosphere, but is nearly completely offset by the carbon dioxide consumed from growing the plants, resulting in a release of only 15-18 g of CO2 per kWh of energy produced. This is substantially lower than the releases rate of fossil fuel technologies, which can range from releases of 955 g/kWh (coal), 813 g/kWh (oil), and 446 g/kWh (natural gas). [1] Recently, Steeper Energy announced that the carbon intensity (CI) of its Hydrofaction™ oil is 15 CO2eq/MJ according to GHGenius model (version 4.03a), while diesel fuel is 93.55 CO2eq/MJ. [21]
Hydrothermal liquefaction is a clean process that doesn't produce harmful compounds, such as ammonia, NOx, or SOx. [1] Instead the heteroatoms, including nitrogen, sulfur, and chlorine, are converted into harmless byproducts such as N2 and inorganic acids that can be neutralized with bases.
The HTL process differs from pyrolysis as it can process wet biomass and produce a bio-oil that contains approximately twice the energy density of pyrolysis oil. Pyrolysis is a related process to HTL, but biomass must be processed and dried in order to increase the yield. [22] The presence of water in pyrolysis drastically increases the heat of vaporization of the organic material, increasing the energy required to decompose the biomass. Typical pyrolysis processes require a water content of less than 40% to suitably convert the biomass to bio-oil. This requires considerable pretreatment of wet biomass such as tropical grasses, which contain a water content as high as 80-85%, and even further treatment for aquatic species, which can contain higher than 90% water content. [1]
The HTL oil can contain up to 80% of the feedstock carbon content (single pass). [23] HTL oil has good potential to yield bio-oil with "drop-in" properties that can be directly distributed in existing petroleum infrastructure. [23] [24]
The energy returned on energy invested (EROEI) of these processes is uncertain and/or has not been measured. Furthermore, products of hydrous pyrolysis might not meet current fuel standards. Further processing may be required to produce fuels. [25]
Biofuel is a fuel that is produced over a short time span from biomass, rather than by the very slow natural processes involved in the formation of fossil fuels such as oil. Biofuel can be produced from plants or from agricultural, domestic or industrial biowaste. Biofuels are mostly used for transportation, but can also be used for heating and electricity. Biofuels are regarded as a renewable energy source. The use of biofuel has been subject to criticism regarding the "food vs fuel" debate, varied assessments of their sustainability, and possible deforestation and biodiversity loss as a result of biofuel production.
Thermal depolymerization (TDP) is the process of converting a polymer into a monomer or a mixture of monomers, by predominantly thermal means. It may be catalyzed or un-catalyzed and is distinct from other forms of depolymerization which may rely on the use of chemicals or biological action. This process is associated with an increase in entropy.
Pyrolysis is the process of thermal decomposition of materials at elevated temperatures, often in an inert atmosphere.
Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.
In petrochemistry, petroleum geology and organic chemistry, cracking is the process whereby complex organic molecules such as kerogens or long-chain hydrocarbons are broken down into simpler molecules such as light hydrocarbons, by the breaking of carbon–carbon bonds in the precursors. The rate of cracking and the end products are strongly dependent on the temperature and presence of catalysts. Cracking is the breakdown of large hydrocarbons into smaller, more useful alkanes and alkenes. Simply put, hydrocarbon cracking is the process of breaking long-chain hydrocarbons into short ones. This process requires high temperatures.
The Fischer–Tropsch process (FT) is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen, known as syngas, into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The Fischer–Tropsch process is an important reaction in both coal liquefaction and gas to liquids technology for producing liquid hydrocarbons.
Coal liquefaction is a process of converting coal into liquid hydrocarbons: liquid fuels and petrochemicals. This process is often known as "Coal to X" or "Carbon to X", where X can be many different hydrocarbon-based products. However, the most common process chain is "Coal to Liquid Fuels" (CTL).
Synthetic fuel or synfuel is a liquid fuel, or sometimes gaseous fuel, obtained from syngas, a mixture of carbon monoxide and hydrogen, in which the syngas was derived from gasification of solid feedstocks such as coal or biomass or by reforming of natural gas.
Biomass to liquid is a multi-step process of producing synthetic hydrocarbon fuels made from biomass via a thermochemical route.
Waste-to-energy (WtE) or energy-from-waste (EfW) is the process of generating energy in the form of electricity and/or heat from the primary treatment of waste, or the processing of waste into a fuel source. WtE is a form of energy recovery. Most WtE processes generate electricity and/or heat directly through combustion, or produce a combustible fuel commodity, such as methane, methanol, ethanol or synthetic fuels, often derived from the product syngas.
Pyrolysis oil, sometimes also known as biocrude or bio-oil, is a synthetic fuel with few industrial application and under investigation as substitute for petroleum. It is obtained by heating dried biomass without oxygen in a reactor at a temperature of about 500 °C (900 °F) with subsequent cooling, separation from the aqueous phase and other processes. Pyrolysis oil is a kind of tar and normally contains levels of oxygen too high to be considered a pure hydrocarbon. This high oxygen content results in non-volatility, corrosiveness, partial miscibility with fossil fuels, thermal instability, and a tendency to polymerize when exposed to air. As such, it is distinctly different from petroleum products. Removing oxygen from bio-oil or nitrogen from algal bio-oil is known as upgrading.
Hydrogen gas is produced by several industrial methods. Nearly all of the world's current supply of hydrogen is created from fossil fuels. Most hydrogen is gray hydrogen made through steam methane reforming. In this process, hydrogen is produced from a chemical reaction between steam and methane, the main component of natural gas. Producing one tonne of hydrogen through this process emits 6.6–9.3 tonnes of carbon dioxide. When carbon capture and storage is used to remove a large fraction of these emissions, the product is known as blue hydrogen.
Renewable Fuels are fuels produced from renewable resources. Examples include: biofuels, Hydrogen fuel, and fully synthetic fuel produced from ambient carbon dioxide and water. This is in contrast to non-renewable fuels such as natural gas, LPG (propane), petroleum and other fossil fuels and nuclear energy. Renewable fuels can include fuels that are synthesized from renewable energy sources, such as wind and solar. Renewable fuels have gained in popularity due to their sustainability, low contributions to the carbon cycle, and in some cases lower amounts of greenhouse gases. The geo-political ramifications of these fuels are also of interest, particularly to industrialized economies which desire independence from Middle Eastern oil.
Biochar is the lightweight black residue, consisting of carbon and ashes, remaining after the pyrolysis of biomass, and is a form of charcoal. Biochar is defined by the International Biochar Initiative as the "solid material obtained from the thermochemical conversion of biomass in an oxygen-limited environment".
Second-generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of non-food biomass. Biomass in this context means plant materials and animal waste used especially as a source of fuel.
Algae fuel, algal biofuel, or algal oil is an alternative to liquid fossil fuels that uses algae as its source of energy-rich oils. Also, algae fuels are an alternative to commonly known biofuel sources, such as corn and sugarcane. When made from seaweed (macroalgae) it can be known as seaweed fuel or seaweed oil.
Biogasoline is a type of gasoline produced from biomass such as algae. Like traditionally produced gasoline, it is made up of hydrocarbons with 6 (hexane) to 12 (dodecane) carbon atoms per molecule and can be used in internal combustion engines. However, unlike traditional gasoline/petroleum based fuels, which are mainly composed from oil, biogasolines are made from plants such as beets and sugarcane or cellulosic biomass- substances normally referred to as plant waste.
Superheated water is liquid water under pressure at temperatures between the usual boiling point, 100 °C (212 °F) and the critical temperature, 374 °C (705 °F). It is also known as "subcritical water" or "pressurized hot water". Superheated water is stable because of overpressure that raises the boiling point, or by heating it in a sealed vessel with a headspace, where the liquid water is in equilibrium with vapour at the saturated vapor pressure. This is distinct from the use of the term superheating to refer to water at atmospheric pressure above its normal boiling point, which has not boiled due to a lack of nucleation sites.
Reactive flash volatilization (RFV) is a chemical process that rapidly converts nonvolatile solids and liquids to volatile compounds by thermal decomposition for integration with catalytic chemistries.
Hydrothermal carbonization (HTC) is a chemical process for the conversion of organic compounds to structured carbons. It can be used to make a wide variety of nanostructured carbons, simple production of brown coal substitute, synthesis gas, liquid petroleum precursors and humus from biomass with release of energy. Technically the process imitates, within a few hours, the brown coal formation process which takes place in nature over enormously longer geological periods of 50,000 to 50 million years. It was investigated by Friedrich Bergius and first described in 1913.
{{cite journal}}
: Cite journal requires |journal=
(help)