Hyperbolic coordinates

Last updated
Hyperbolic coordinates plotted on the Euclidean plane: all points on the same blue ray share the same coordinate value u, and all points on the same red hyperbola share the same coordinate value v. Hyperbolic coordinates.svg
Hyperbolic coordinates plotted on the Euclidean plane: all points on the same blue ray share the same coordinate value u, and all points on the same red hyperbola share the same coordinate value v.

In mathematics, hyperbolic coordinates are a method of locating points in quadrant I of the Cartesian plane

Contents

.

Hyperbolic coordinates take values in the hyperbolic plane defined as:

.

These coordinates in HP are useful for studying logarithmic comparisons of direct proportion in Q and measuring deviations from direct proportion.

For in take

and

.

The parameter u is the hyperbolic angle to (x, y) and v is the geometric mean of x and y.

The inverse mapping is

.

The function is a continuous mapping, but not an analytic function.

Alternative quadrant metric

Since HP carries the metric space structure of the Poincaré half-plane model of hyperbolic geometry, the bijective correspondence brings this structure to Q. It can be grasped using the notion of hyperbolic motions. Since geodesics in HP are semicircles with centers on the boundary, the geodesics in Q are obtained from the correspondence and turn out to be rays from the origin or petal-shaped curves leaving and re-entering the origin. And the hyperbolic motion of HP given by a left-right shift corresponds to a squeeze mapping applied to Q.

Since hyperbolas in Q correspond to lines parallel to the boundary of HP, they are horocycles in the metric geometry of Q.

If one only considers the Euclidean topology of the plane and the topology inherited by Q, then the lines bounding Q seem close to Q. Insight from the metric space HP shows that the open set Q has only the origin as boundary when viewed through the correspondence. Indeed, consider rays from the origin in Q, and their images, vertical rays from the boundary R of HP. Any point in HP is an infinite distance from the point p at the foot of the perpendicular to R, but a sequence of points on this perpendicular may tend in the direction of p. The corresponding sequence in Q tends along a ray toward the origin. The old Euclidean boundary of Q is no longer relevant.

Applications in physical science

Fundamental physical variables are sometimes related by equations of the form k = x y. For instance, V = I R (Ohm's law), P = V I (electrical power), P V = k T (ideal gas law), and f λ = v (relation of wavelength, frequency, and velocity in the wave medium). When the k is constant, the other variables lie on a hyperbola, which is a horocycle in the appropriate Q quadrant.

For example, in thermodynamics the isothermal process explicitly follows the hyperbolic path and work can be interpreted as a hyperbolic angle change. Similarly, a given mass M of gas with changing volume will have variable density δ = M / V, and the ideal gas law may be written P = k Tδ so that an isobaric process traces a hyperbola in the quadrant of absolute temperature and gas density.

For hyperbolic coordinates in the theory of relativity see the History section.

Statistical applications

Economic applications

There are many natural applications of hyperbolic coordinates in economics:

History

The geometric mean is an ancient concept, but hyperbolic angle was developed in this configuration by Gregoire de Saint-Vincent. He was attempting to perform quadrature with respect to the rectangular hyperbola y = 1/x. That challenge was a standing open problem since Archimedes performed the quadrature of the parabola. The curve passes through (1,1) where it is opposite the origin in a unit square. The other points on the curve can be viewed as rectangles having the same area as this square. Such a rectangle may be obtained by applying a squeeze mapping to the square. Another way to view these mappings is via hyperbolic sectors. Starting from (1,1) the hyperbolic sector of unit area ends at (e, 1/e), where e is 2.71828…, according to the development of Leonhard Euler in Introduction to the Analysis of the Infinite (1748).

Taking (e, 1/e) as the vertex of rectangle of unit area, and applying again the squeeze that made it from the unit square, yields Generally n squeezes yields A. A. de Sarasa noted a similar observation of G. de Saint Vincent, that as the abscissas increased in a geometric series, the sum of the areas against the hyperbola increased in arithmetic series, and this property corresponded to the logarithm already in use to reduce multiplications to additions. Euler’s work made the natural logarithm a standard mathematical tool, and elevated mathematics to the realm of transcendental functions. The hyperbolic coordinates are formed on the original picture of G. de Saint-Vincent, which provided the quadrature of the hyperbola, and transcended the limits of algebraic functions.

In special relativity the focus is on the 3-dimensional hypersurface in the future of spacetime where various velocities arrive after a given proper time. Scott Walter [1] explains that in November 1907 Hermann Minkowski alluded to a well-known three-dimensional hyperbolic geometry while speaking to the Göttingen Mathematical Society, but not to a four-dimensional one. [2] In tribute to Wolfgang Rindler, the author of a standard introductory university-level textbook on relativity, hyperbolic coordinates of spacetime are called Rindler coordinates.

Related Research Articles

<span class="mw-page-title-main">Hyperbola</span> Plane curve: conic section

In mathematics, a hyperbola is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, called connected components or branches, that are mirror images of each other and resemble two infinite bows. The hyperbola is one of the three kinds of conic section, formed by the intersection of a plane and a double cone. If the plane intersects both halves of the double cone but does not pass through the apex of the cones, then the conic is a hyperbola.

<span class="mw-page-title-main">Hyperbolic functions</span> Collective name of 6 mathematical functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

<span class="mw-page-title-main">Paraboloid</span> Quadric surface with one axis of symmetry and no center of symmetry

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

<span class="mw-page-title-main">Hyperbolic spiral</span> Spiral asymptotic to a line

A hyperbolic spiral is a plane curve, which can be described in polar coordinates by the equation

<span class="mw-page-title-main">Taxicab geometry</span> Type of metric geometry

A taxicab geometry or a Manhattan geometry is a geometry whose usual distance function or metric of Euclidean geometry is replaced by a new metric in which the distance between two points is the sum of the absolute differences of their Cartesian coordinates. The taxicab metric is also known as rectilinear distance, L1 distance, L1 distance or norm, snake distance, city block distance, Manhattan distance or Manhattan length. The latter names refer to the rectilinear street layout on the island of Manhattan, where the shortest path a taxi travels between two points is the sum of the absolute values of distances that it travels on avenues and on streets.

In algebra, a split complex number is based on a hyperbolic unitj satisfying A split-complex number has two real number components x and y, and is written The conjugate of z is Since the product of a number z with its conjugate is an isotropic quadratic form.

<span class="mw-page-title-main">Hyperbolic orthogonality</span> Relation of space and time in relativity theory

In geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular time line. This dependence on a certain time line is determined by velocity, and is the basis for the relativity of simultaneity.

<span class="mw-page-title-main">Hyperbolic sector</span> Region of the Cartesian plane bounded by a hyperbola and two radii

A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola. A hyperbolic sector in standard position has a = 1 and b > 1.

<span class="mw-page-title-main">Hyperbolic angle</span> Argument of the hyperbolic functions

In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane. The hyperbolic angle parametrises the unit hyperbola, which has hyperbolic functions as coordinates. In mathematics, hyperbolic angle is an invariant measure as it is preserved under hyperbolic rotation.

<span class="mw-page-title-main">Squeeze mapping</span> Linear mapping permuting rectangles of the same area

In linear algebra, a squeeze mapping, also called a squeeze transformation, is a type of linear map that preserves Euclidean area of regions in the Cartesian plane, but is not a rotation or shear mapping.

In geometry, hyperbolic motions are isometric automorphisms of a hyperbolic space. Under composition of mappings, the hyperbolic motions form a continuous group. This group is said to characterize the hyperbolic space. Such an approach to geometry was cultivated by Felix Klein in his Erlangen program. The idea of reducing geometry to its characteristic group was developed particularly by Mario Pieri in his reduction of the primitive notions of geometry to merely point and motion.

<span class="mw-page-title-main">Hyperbolic motion (relativity)</span> Motion of an object with constant proper acceleration in special relativity.

Hyperbolic motion is the motion of an object with constant proper acceleration in special relativity. It is called hyperbolic motion because the equation describing the path of the object through spacetime is a hyperbola, as can be seen when graphed on a Minkowski diagram whose coordinates represent a suitable inertial (non-accelerated) frame. This motion has several interesting features, among them that it is possible to outrun a photon if given a sufficient head start, as may be concluded from the diagram.

In mathematics, a function of a motor variable is a function with arguments and values in the split-complex number plane, much as functions of a complex variable involve ordinary complex numbers. William Kingdon Clifford coined the term motor for a kinematic operator in his "Preliminary Sketch of Biquaternions" (1873). He used split-complex numbers for scalars in his split-biquaternions. Motor variable is used here in place of split-complex variable for euphony and tradition.

<span class="mw-page-title-main">Grégoire de Saint-Vincent</span> Belgian Jesuit and mathematician

Grégoire de Saint-Vincent - in Latin : Gregorius a Sancto Vincentio, in Dutch : Gregorius van St-Vincent - was a Flemish Jesuit and mathematician. He is remembered for his work on quadrature of the hyperbola.

<span class="mw-page-title-main">Rapidity</span> Measure of relativistic velocity

In relativity, rapidity is commonly used as a measure for relativistic velocity. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with distance and time coordinates.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. It can also be related to the relativistic velocity addition formula.

<span class="mw-page-title-main">Unit hyperbola</span> Geometric figure

In geometry, the unit hyperbola is the set of points (x,y) in the Cartesian plane that satisfy the implicit equation In the study of indefinite orthogonal groups, the unit hyperbola forms the basis for an alternative radial length

<span class="mw-page-title-main">Poincaré disk model</span> Model of hyperbolic geometry

In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or diameters of the unit circle.

In the hyperbolic plane, as in the Euclidean plane, each point can be uniquely identified by two real numbers. Several qualitatively different ways of coordinatizing the plane in hyperbolic geometry are used.

References

  1. Walter (1999) page 99
  2. Walter (1999) page 100