Ice lenses are bodies of ice formed when moisture, diffused within soil or rock, accumulates in a localized zone. The ice initially accumulates within small collocated pores or pre-existing crack, and, as long as the conditions remain favorable, continues to collect in the ice layer or ice lens, wedging the soil or rock apart. Ice lenses grow parallel to the surface and several centimeters to several decimeters (inches to feet) deep in the soil or rock. Studies from 1990 have demonstrated that rock fracture by ice segregation (i.e., the fracture of intact rock by ice lenses that grow by drawing water from their surroundings during periods of sustained subfreezing temperatures) is a more effective weathering process than the freeze-thaw process which older texts proposed. [1]
Ice lenses play a key role in frost induced heaving of soils and fracture of bedrock, which are fundamental to weathering in cold regions. Frost heaving creates debris and dramatically shapes landscapes into complex patterns. Although rock fracture in periglacial regions (alpine, subpolar and polar) has often been attributed to the freezing and volumetric expansion of water trapped within pores and cracks, the majority of frost heaving and of bedrock fracture results instead from ice segregation and lens growth in the near-surface frozen regions. Ice segregation results in rock fracture and frost heave. [2]
Frost heave is the process by which the freezing of water-saturated soil causes the deformation and upward thrust of the ground surface. [3] This process can distort and crack pavement, damage the foundations of buildings and displace soil in regular patterns. Moist, fine-grained soil at certain temperatures is most susceptible to frost heaving.
Frost heave is common in arctic tundra because the permafrost maintains ground frozen at depth and prevents snowmelt and rain from draining. As a result, conditions are optimal for deep ice lens formation with large ice accumulations and significant soil displacement. [4]
Differential frost heave producing complex patterns will occur if the correct conditions exist. Feedback from one year's frost heave influences the effects in subsequent years. For example, a small increase in overburden will affect the depth of ice formation and heaving in the subsequent years. Time-dependent models of the frost heave indicate that over a long enough period the short-separation perturbations damp out, while mid-range perturbations grow and come to dominate the landscape. [4]
Bands of sediment or glacial till have been observed below Antarctic ice sheets; these are believed to result from ice lenses forming in the debris. In the faster flowing glacial regions, the ice sheet is sliding over water saturated sediments (glacial till) or actually being floated upon a layer of water. The till and water served to reduce friction between the base of the ice sheet and the bedrock. These subglacial waters come from surface water which seasonally drains from melting at the surface, as well as from ice-sheet base melting. [5]
Ice lens growth within the bedrock below the glacier is projected during the summer months when there is ample water at the base of the glacier. Ice lenses will form within the bedrock, accumulating until the rock is sufficiently weakened that it shears or spalls off. Layers of rock along the interface between glaciers and the bedrock are freed, producing much of the sediments in these basal regions of glaciers. Since the rate of glacier movement is dependent upon the characteristics of this basal ice, research is ongoing to better quantify the phenomena. [6]
The basic condition for ice segregation and frost heaving is existence of a region in soil or porous rock which is relatively permeable, is in a temperature range which allows the coexistence of ice and water (in a premelted state), and has a temperature gradient across the region. [7]
A key phenomenon for understanding ice segregation in soil or porous rock (also referred to as an ice lens due to its shape) is premelting, which is the development of a liquid film on surfaces and interfaces at temperatures significantly below their bulk melting temperature. The term premelting is used to describe the reduction in the melting temperature (below 0 °C) which results from the surface curvature of water that's confined in a porous medium (the Gibbs-Thomson effect). Premelted water exists as a thin layer on the surface of ice. Under premelting conditions, ice and water can coexist at temperatures below -10 °C in a porous medium. The Gibbs-Thomson effect results in water migrating down a thermal gradient (from higher temperatures to lower temperatures); Dash states, “…material is carried to colder regions…” This can also be viewed energetically as favoring larger ice particles over smaller (Ostwald ripening). As a result, when conditions exist for ice segregation (ice lens formation) water flows toward the segregated ice and freezes on the surface, thickening the segregated ice layer. [7]
It is possible to develop analytic models using these principles; they predict the following characteristics, which are consistent with field observations:
Rocks routinely contain pores of varying size and shape, regardless of origin or location. Rock voids are essentially small cracks, and serve as the location from which a crack can propagate if the rock is placed in tension. If ice accumulates in a pore asymmetrically, the ice will place the rock in tension in a plane perpendicular to the ice accumulation direction. Hence the rock will crack along a plane perpendicular to the direction of ice accumulation, which is effectively parallel to the surface. [9]
Walder and Hallet developed models that predict rock crack-growth locations and rates consistent with fractures actually observed in the field. Their model predicted that marble and granite grow cracks most effectively when the temperatures range from a −4 °C to −15 °C; in this range granite may develop fractures enclosing ice 3 meters in length in a year. When the temperature is higher the ice which is formed does not apply enough pressure to cause the crack to propagate. When the temperature is below this range the water is less mobile and cracks grow more slowly. [9]
Mutron confirmed that ice initially forms in pores and creates small microfractures parallel to the surface. As ice accumulates, the ice layer grows outward in what is frequently characterized as an ice-lens parallel to the surface. Ice will form in water-permeable rock in much the same way as it forms in soil. If the ice layer resulted from cooling from a single direction (e.g., the top) the rock fracture tends to lie close to the surface (e.g., 1–2 cm in chalk). If the ice layer results from freezing from both sides (e.g., above and below) the rock fracture tends to lie deeper (e.g., 2–3.5 cm in chalk). [2]
The formation of an ice sphere can happen when an object is about 0.5–1.0 ft above where the water reaches repeatedly. The water will form a thin layer of ice on any surface it reaches. Each wave is an advancement and recession of water. The advancement soaks everything on the shore. When the wave recedes, it's left exposed to freezing temperatures. This brief moment of exposure causes a thin layer of ice to form. When that formation is suspended in the air by dead vegetation or erect objects, the ice will begin to form a sphere or teardrop-like shape. Similar to how a condensation nucleus forms, the sphere needs a base that is not water. Most commonly on vegetation, the sphere starts as a dot of ice on a branch or stem. As waves soak the shore in water and briefly expose the soaked objects to freezing temperatures, the dot begins to grow as each thin layer wraps itself around the previous layer. Over time, they form spheres or teardrop-like formations
Frost is a thin layer of ice on a solid surface, which forms from water vapor that deposits onto a freezing surface. Frost forms when the air contains more water vapor than it can normally hold at a specific temperature. The process is similar to the formation of dew, except it occurs below the freezing point of water typically without crossing through a liquid state.
A glacier is a persistent body of dense ice that is constantly moving under its own weight. A glacier forms where the accumulation of snow exceeds its ablation over many years, often centuries. It acquires distinguishing features, such as crevasses and seracs, as it slowly flows and deforms under stresses induced by its weight. As it moves, it abrades rock and debris from its substrate to create landforms such as cirques, moraines, or fjords. Although a glacier may flow into a body of water, it forms only on land and is distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.
Weathering is the deterioration of rocks, soils and minerals through contact with water, atmospheric gases, sunlight, and biological organisms. It occurs in situ, and so is distinct from erosion, which involves the transport of rocks and minerals by agents such as water, ice, snow, wind, waves and gravity.
Landforms are categorized by characteristic physical attributes such as their creating process, shape, elevation, slope, orientation, rock exposure, and soil type.
Scree is a collection of broken rock fragments at the base of a cliff or other steep rocky mass that has accumulated through periodic rockfall. Landforms associated with these materials are often called talus deposits. Talus deposits typically have a concave upwards form, where the maximum inclination corresponds to the angle of repose of the mean debris particle size. The exact definition of scree in the primary literature is somewhat relaxed, and it often overlaps with both talus and colluvium.
A cirque is an amphitheatre-like valley formed by glacial erosion. Alternative names for this landform are corrie and cwm. A cirque may also be a similarly shaped landform arising from fluvial erosion.
Frost heaving is an upwards swelling of soil during freezing conditions caused by an increasing presence of ice as it grows towards the surface, upwards from the depth in the soil where freezing temperatures have penetrated into the soil. Ice growth requires a water supply that delivers water to the freezing front via capillary action in certain soils. The weight of overlying soil restrains vertical growth of the ice and can promote the formation of lens-shaped areas of ice within the soil. Yet the force of one or more growing ice lenses is sufficient to lift a layer of soil, as much as 1 foot or more. The soil through which water passes to feed the formation of ice lenses must be sufficiently porous to allow capillary action, yet not so porous as to break capillary continuity. Such soil is referred to as "frost susceptible". The growth of ice lenses continually consumes the rising water at the freezing front. Differential frost heaving can crack road surfaces—contributing to springtime pothole formation—and damage building foundations. Frost heaves may occur in mechanically refrigerated cold-storage buildings and ice rinks.
In gelisols, cryoturbation refers to the mixing of materials from various horizons of the soil down to the bedrock due to freezing and thawing.
Pingos are intrapermafrost ice-cored hills, 3–70 m (10–230 ft) high and 30–1,000 m (98–3,281 ft) in diameter. They are typically conical in shape and grow and persist only in permafrost environments, such as the Arctic and subarctic. A pingo is a periglacial landform, which is defined as a non-glacial landform or process linked to colder climates. It is estimated that there are more than 11,000 pingos on Earth, with the Tuktoyaktuk peninsula area having the greatest concentration at a total of 1,350. There is currently remarkably limited data on pingos.
Plucking, also referred to as quarrying, is a glacial phenomenon that is responsible for the weathering and erosion of pieces of bedrock, especially large "joint blocks". This occurs in a type of glacier called a "valley glacier". As a glacier moves down a valley, friction causes the basal ice of the glacier to melt and infiltrate joints (cracks) in the bedrock. The freezing and thawing action of the ice enlarges, widens, or causes further cracks in the bedrock as it changes volume across the ice/water phase transition, gradually loosening the rock between the joints. This produces large chunks of rock called joint blocks. Eventually these joint blocks come loose and become trapped in the glacier.
An ice shove is a surge of ice from an ocean or large lake onto the shore. Ice shoves are caused by ocean currents, strong winds, or temperature differences pushing ice onto the shore, creating piles up to 12 metres high. Ice shoves can be caused by temperature fluctuations, wind action, or changing water levels and can cause devastation to coastal Arctic communities. Cyclical climate change will also play a role in the formation and frequency of ice shove events; a rise in global temperatures leads to more open water to facilitate ice movement. Low pressure systems will destabilize ice sheets and send them shoreward. Also referred to as "landfast ice", it is an essential component to the coastal sea ice system, including the sediment dynamics. Arctic peoples utilize these ice shoves to travel and hunt. Ringed seals, an important prey for polar bears, are specifically adapted to maintain breathing holes in ice shoves, which lack the same openings usually used by marine mammals in drifting ice packs. The mere fact that the Ringed seal is uniquely adapted to utilizing ice shoves for breathing holes, and that polar bears have adapted to this behaviour for hunting, as well as the fact that the Iñupiat have a distinct term for the phenomena, indicates that ice shoves are a regular and continuing phenomena in the Arctic.
Needle ice is a needle-shaped column of ice formed by groundwater. Needle ice forms when the temperature of the soil is above 0 °C (32 °F) and the surface temperature of the air is below 0 °C (32 °F). Liquid water underground rises to the surface by capillary action, and then freezes and contributes to a growing needle-like ice column. The process usually occurs at night when the air temperature reaches its minimum.
Palsas are peat mounds with a permanently frozen peat and mineral soil core. They are a typical phenomenon in the polar and subpolar zone of discontinuous permafrost. One of their characteristics is having steep slopes that rise above the mire surface. This leads to the accumulation of large amounts of snow around them. The summits of the palsas are free of snow even in winter, because the wind carries the snow and deposits on the slopes and elsewhere on the flat mire surface. Palsas can be up to 150 m (490 ft) in diameter and can reach a height of 12 m (39 ft).
Ice jacking occurs when water permeates a confined space within a structural support or a geological formation, ultimately causing structural fracture when the water freezes and expands. The force from this expansion can damage shorelines, rock faces, and other natural environments. This has the potential to lead to property damage and environmental changes. Ice jacking most commonly refers to shoreline damage caused by lakes freezing, but it has also been applied to geologic engineering and rock erosion. When this occurs within rocks, it is called ice wedging. When this occurs within the soil, it is called frost heaving or ice heaving. It is similar in appearance to, but not to be confused with, ice shove, which is a pile-up of ice on a shoreline.
A frost boil, also known as mud boils, a stony earth circles, frost scars, or mud circles, are small circular mounds of fresh soil material formed by frost action and cryoturbation. They are found typically found in periglacial or alpine environments where permafrost is present, and may damage roads and other man-made structures. They are typically 1 to 3 metres in diameter.
Frost crack or Southwest canker is a form of tree bark damage sometimes found on thin barked trees, visible as vertical fractures on the southerly facing surfaces of tree trunks. Frost crack is distinct from sun scald and sun crack and physically differs from normal rough-bark characteristics as seen in mature oaks, pines, poplars and other tree species.
Frost weathering is a collective term for several mechanical weathering processes induced by stresses created by the freezing of water into ice. The term serves as an umbrella term for a variety of processes, such as frost shattering, frost wedging, and cryofracturing. The process may act on a wide range of spatial and temporal scales, from minutes to years and from dislodging mineral grains to fracturing boulders. It is most pronounced in high-altitude and high-latitude areas and is especially associated with alpine, periglacial, subpolar maritime, and polar climates, but may occur anywhere at sub-freezing temperatures if water is present.
Cryosuction is the concept of negative pressure in freezing liquids so that more liquid is sucked into the freezing zone. In soil, the transformation of liquid water to ice in the soil pores causes water to migrate through soil pores to the freezing zone through capillary action.
Overdeepening is a characteristic of basins and valleys eroded by glaciers. An overdeepened valley profile is often eroded to depths which are hundreds of metres below the lowest continuous surface line along a valley or watercourse. This phenomenon is observed under modern day glaciers, in salt-water fjords and fresh-water lakes remaining after glaciers melt, as well as in tunnel valleys which are partially or totally filled with sediment. When the channel produced by a glacier is filled with debris, the subsurface geomorphic structure is found to be erosionally cut into bedrock and subsequently filled by sediments. These overdeepened cuts into bedrock structures can reach a depth of several hundred metres below the valley floor.
Ice segregation is the geological phenomenon produced by the formation of ice lenses, which induce erosion when moisture, diffused within soil or rock, accumulates in a localized zone. The ice initially accumulates within small collocated pores or pre-existing cracks, and, as long as the conditions remain favorable, continues to collect in the ice layer or ice lens, wedging the soil or rock apart. Ice lenses grow parallel to the surface and several centimeters to several decimeters deep in the soil or rock. Studies between 1990 and present have demonstrated that rock fracture by ice segregation is a more effective weathering process than the freeze-thaw process which older texts proposed.