Joseph O'Rourke is the Spencer T. and Ann W. Olin Professor of Computer Science at Smith College and the founding chair of the Smith computer science department. [1] His main research interest is computational geometry.
One of O'Rourke's early results was an algorithm for finding the minimum bounding box of a point set in three dimensions when the box is not required to be axis-aligned. The problem is made difficult by the fact that the optimal box may not share any of its face planes with the convex hull of the point set. Nevertheless, O'Rourke found an algorithm for this problem with running time . [2]
In 1985, O'Rourke was both the local arrangements chair and the program chair of the first annual Symposium on Computational Geometry. [3] He was formerly the arXiv moderator for computational geometry and discrete mathematics. [4]
In 2012 O'Rourke was named a Fellow of the Association for Computing Machinery. [5]
Ronald Lewis Graham was an American mathematician credited by the American Mathematical Society as "one of the principal architects of the rapid development worldwide of discrete mathematics in recent years". He was president of both the American Mathematical Society and the Mathematical Association of America, and his honors included the Leroy P. Steele Prize for lifetime achievement and election to the National Academy of Sciences.
Erik D. Demaine is a Canadian-American professor of computer science at the Massachusetts Institute of Technology and a former child prodigy.
In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane which can be folded to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard.
Neil Immerman is an American theoretical computer scientist, a professor of computer science at the University of Massachusetts Amherst. He is one of the key developers of descriptive complexity, an approach he is currently applying to research in model checking, database theory, and computational complexity theory.
Branko Grünbaum was a Croatian-born mathematician of Jewish descent and a professor emeritus at the University of Washington in Seattle. He received his Ph.D. in 1957 from Hebrew University of Jerusalem in Israel.
In computational complexity, problems that are in the complexity class NP but are neither in the class P nor NP-complete are called NP-intermediate, and the class of such problems is called NPI. Ladner's theorem, shown in 1975 by Richard E. Ladner, is a result asserting that, if P ≠ NP, then NPI is not empty; that is, NP contains problems that are neither in P nor NP-complete. Since it is also true that if NPI problems exist, then P ≠ NP, it follows that P = NP if and only if NPI is empty.
Victor Yakovlevich Pan is a Soviet and American mathematician and computer scientist, known for his research on algorithms for polynomials and matrix multiplication.
Jean-Daniel Boissonnat is a French computer scientist, who works as a director of research at the French Institute for Research in Computer Science and Automation (INRIA). He is an invited professor of computational geometry at the Collège de France, holding the Chair in Informatics and Computational Sciences for 2016–2017.
Jin Akiyama is a Japanese mathematician, known for his appearances on Japanese prime-time television (NHK) presenting magic tricks with mathematical explanations. He is director of the Mathematical Education Research Center at the Tokyo University of Science, and professor emeritus at Tokai University.
Otfried Cheong is a German computational geometer working in South Korea at KAIST. He is known as one of the authors of the widely used computational geometry textbook Computational Geometry: Algorithms and Applications and as the developer of Ipe, a vector graphics editor.
Mariette Yvinec is a French researcher in computational geometry at the French Institute for Research in Computer Science and Automation (INRIA) in Sophia Antipolis. She is one of the developers of CGAL, a software library of computational geometry algorithms.
Lynn Margaret Batten was a Canadian-Australian mathematician known for her books about finite geometry and cryptography, and for her research on the classification of malware.
Geometric Folding Algorithms: Linkages, Origami, Polyhedra is a monograph on the mathematics and computational geometry of mechanical linkages, paper folding, and polyhedral nets, by Erik Demaine and Joseph O'Rourke. It was published in 2007 by Cambridge University Press (ISBN 978-0-521-85757-4). A Japanese-language translation by Ryuhei Uehara was published in 2009 by the Modern Science Company (ISBN 978-4-7649-0377-7).
Art Gallery Theorems and Algorithms is a mathematical monograph on topics related to the art gallery problem, on finding positions for guards within a polygonal museum floorplan so that all points of the museum are visible to at least one guard, and on related problems in computational geometry concerning polygons. It was written by Joseph O'Rourke, and published in 1987 in the International Series of Monographs on Computer Science of the Oxford University Press. Only 1000 copies were produced before the book went out of print, so to keep this material accessible O'Rourke has made a pdf version of the book available online.
In computational geometry, the star unfolding of a convex polyhedron is a net obtained by cutting the polyhedron along geodesics through its faces. It has also been called the inward layout of the polyhedron, or the Alexandrov unfolding after Aleksandr Danilovich Aleksandrov, who first considered it.
In the mathematics of paper folding, the big-little-big lemma is a necessary condition for a crease pattern with specified mountain folds and valley folds to be able to be folded flat. It differs from Kawasaki's theorem, which characterizes the flat-foldable crease patterns in which a mountain-valley assignment has not yet been made. Together with Maekawa's theorem on the total number of folds of each type, the big-little-big lemma is one of the two main conditions used to characterize the flat-foldability of mountain-valley assignments for crease patterns that meet the conditions of Kawasaki's theorem. Mathematical origami expert Tom Hull calls the big-little-big lemma "one of the most basic rules" for flat foldability of crease patterns.
Rona Gurkewitz is an American mathematician and computer scientist, known for her work on modular origami. She is a professor emerita of computer science at Western Connecticut State University, and the former head of the department of computer science there.
Dianne Carol Hansford is an American computer scientist known for her research on Coons patches in computer graphics and for her textbooks on computer-aided geometric design, linear algebra, and the mathematics behind scientific visualization. She is a lecturer at Arizona State University in the School of Computing and Augmented Intelligence, and the cofounder of a startup based on her research, 3D Compression Technologies.
{{citation}}
: CS1 maint: untitled periodical (link){{citation}}
: CS1 maint: untitled periodical (link){{citation}}
: CS1 maint: untitled periodical (link){{citation}}
: CS1 maint: untitled periodical (link){{citation}}
: CS1 maint: untitled periodical (link)