KIM-1

Last updated
KIM-1
MOS KIM-1 IMG 4211 cropped scale.jpg
MOS KIM-1 computer. On display at the Musée Bolo, EPFL, Lausanne.
Developer Chuck Peddle
Manufacturer MOS Technology, Inc.
Type single-board computer
Release date1976;47 years ago (1976)
CPU 6502
KIM-1 computer in operation Kim-1-computer.jpg
KIM-1 computer in operation

The KIM-1, short for Keyboard Input Monitor, is a small 6502-based single-board computer developed and produced by MOS Technology, Inc. and launched in 1976. It was very successful in that period, due to its low price (thanks to the inexpensive 6502 microprocessor) and easy-access expandability.

Contents

History

MOS Technology's first processor, the 6501, could be plugged into existing motherboards that used the Motorola 6800, allowing potential users (i.e. engineers and hobbyists) to get a development system up and running very easily using existing hardware. Motorola immediately sued, forcing MOS to pull the 6501 from the market. Changing the pin layout produced the "lawsuit-friendly" 6502. Otherwise identical to the 6501, it nevertheless had the disadvantage of having no machine in which new users could quickly start playing with the CPU.

Chuck Peddle, leader of the 650x group at MOS (and former member of Motorola's 6800 team), designed the KIM-1 in order to fill this need. The KIM-1 came to market in 1976. While the machine was originally intended to be used by engineers, it quickly found a large audience with hobbyists. A complete system could be constructed for under US$500 with the purchase of the computer itself for only US$245, and then adding a power supply, a secondhand terminal and a cassette tape drive.

Many books were available demonstrating small assembly language programs for the KIM, including The First Book of KIM by Jim Butterfield et al. [1] One demo program converted the KIM into a music box by toggling a software-controllable output bit connected to a small loudspeaker. Canadian programmer Peter R. Jennings produced what was probably the first game for microcomputers to be sold commercially, Microchess, originally for the KIM-1.

As the system became more popular one of the common additions was the Tiny BASIC programming language. This required an easy memory expansion; "all of the decoding for the first 4 K is provided right on the KIM board. All you need to provide is 4 K more of RAM chips and some buffers." [2] The hard part was loading the BASIC from cassette tape—a 15-minute, error-prone ordeal.

Rockwell International—who second-sourced the 6502, along with Synertek—released their own microcomputer in one board in 1978, the AIM-65. The AIM included a full ASCII keyboard, a 20-character 14-segment alphanumeric LED display, and a small cash register-like printer. A debug monitor was provided as standard firmware for the AIM, and users could also purchase optional ROM chips with an assembler and a Microsoft BASIC interpreter to choose from.

Finally, there was the Synertek SYM-1 variant, which could be said to be a machine halfway between the KIM and the AIM; it had the KIM's small display, and a simple membrane keyboard of 29 keys (hex digits and control keys only), but provided AIM-standard expansion interfaces and true RS-232 (voltage level as well as current loop mode supported).

Description

The introductory advertisement for the KIM-1 microcomputer, April 1976 KIM-1 Computer Ad May 1976.jpg
The introductory advertisement for the KIM-1 microcomputer, April 1976

The KIM-1 consisted of a single printed circuit board with all the components on one side. It included three main ICs; the MCS6502 CPU, and two MCS6530 Peripheral Interface/Memory Devices. Each MCS6530 comprises a mask programmable 1024 x 8 ROM, a 64 x 8 RAM, two 8 bit bi-directional ports, and a programmable interval timer. [3] The KIM-1 brochure said "1 K BYTE RAM" but it actually had 1152 bytes. The memory was composed of eight 6102 static RAMs (1024 x 1 bits) and the two 64 byte RAMs of the MCS6530s. In the 1970s memory sizes were expressed in several ways. Semiconductor manufacturers would use a precise memory size such as 2048 by 8 and sometimes state the number of bits (16384). Mini and mainframe computers had various memory widths (8 bits to over 36 bits) so manufacturers would use the term "words", such as 4K words. The early hobbyist computer advertisements would use both "words" and "bytes". It was common to see "4096 words", "4K (4096) words" and "4 K bytes". The term KB was unused or very uncommon. The KIM-1 was introduced in the April 1976 issue of BYTE and the advertisement stated "1 K BYTE RAM" and "2048 ROM BYTES". [4]

Also included were six 7-segment LEDs (similar to those on a pocket calculator) and a 24-key calculator-type keypad. Many of the pins of the I/O portions of the 6530s were connected to two connectors on the edge of the board, where they could be used as a serial system for driving a Teletype Model 33 ASR and paper tape reader and punch.

One of these connectors also doubled as the power supply connector, and included analog lines that could be attached to a cassette tape recorder.

Earlier microcomputer systems such as the MITS Altair used a series of switches on the front of the machine to enter data. In order to do anything useful, the user had to enter a small program known as the "bootstrap loader" into the machine using these switches, a process known as booting. Once loaded, the loader would be used to load a larger program off a storage device like a paper tape reader. It would often take upwards of five minutes to load the tiny program into memory, and a single error while flipping the switches meant that the bootstrap loader would crash the machine. This could render some of the bootstrap code garbled, in which case the programmer had to reenter the whole thing and start all over again.

The KIM-1 included a somewhat more complex built-in Terminal Interface Monitor software called TIM that was "contained in 2048 bytes of ROM in two 6530 ROM/RAM/IO arrays". [5] This monitor software included the ability to run a cassette tape for storage, drive the LED display, and run the keypad. As soon as the power was turned on, the monitor would run and the user could immediately start interacting with the machine via the keypad. The KIM-1 was one of the first single-board computers, needing only an external power supply to enable its use as a stand-alone experimental computer. This fact, plus the relatively low cost of getting started, made it quite popular with hobbyists through the late 1970s.

Video display

PAiA TVT-6 Video Display PAiA TVT-6 Video Display Dec 1977.jpg
PAiA TVT-6 Video Display

The designer of the TV Typewriter, Don Lancaster, developed a low cost video display for the KIM-1. The add-on board would display up to 4000 characters on a TV or monitor. A typical configuration would be 16 lines of 32 upper case only characters. The board had only 10 low cost ICs and used the KIM's memory for the screen storage.

The TVT-6 project appeared on the cover on Popular Electronics in July 1977. [6] The complete kit could be ordered from PAiA Electronics for $US34.95.

Lancaster expanded this design to do color and simple graphics in The Cheap Video Cookbook. [7]

Specifications

Tape format

Each bit is represented by three 2.484 ms long tones. The first is always 3700 Hz, the middle is 3700 Hz for "0" or 2400 Hz for "1", and the last one is always 2400 Hz. This gives an effective bit rate of 134.2 bit/s. Detection is done through a PLL using LM565. [8]

The format of data on the tape is: 100 bytes with the value 0x16 (SYN, Synchronous Idle), one byte with the value 0x2A (*), the record identification number, the start address (two characters for the low byte of address, two characters for the high byte), the end address (in the same format), the actual data, one byte with the value 0x2F ("/" character ), a two-byte checksum, and two bytes with the value 0x04 (EOT, End Of Transmission). [8]

Each byte of memory is stored as two sequential ASCII characters on tape, for example, hexadecimal B5 in memory (181 decimal) would be stored as two sequential ASCII characters "B" and "5" (42 and 35 hexadecimal). [8]

See also

Related Research Articles

<span class="mw-page-title-main">Apple II</span> First computer model in the Apple II series

The Apple II is an 8-bit home computer and one of the world's first highly successful mass-produced microcomputer products. It was designed primarily by Steve Wozniak; Jerry Manock developed the design of Apple II's foam-molded plastic case, Rod Holt developed the switching power supply, while Steve Jobs's role in the design of the computer was limited to overseeing Jerry Manock's work on the plastic case. It was introduced by Jobs and Wozniak at the 1977 West Coast Computer Faire, and marks Apple's first launch of a personal computer aimed at a consumer market—branded toward American households rather than businessmen or computer hobbyists.

<span class="mw-page-title-main">MOS Technology 6502</span> 8-bit microprocessor

The MOS Technology 6502 is an 8-bit microprocessor that was designed by a small team led by Chuck Peddle for MOS Technology. The design team had formerly worked at Motorola on the Motorola 6800 project; the 6502 is essentially a simplified, less expensive and faster version of that design.

<span class="mw-page-title-main">Motorola 6800</span> 8-bit microprocessor

The 6800 is an 8-bit microprocessor designed and first manufactured by Motorola in 1974. The MC6800 microprocessor was part of the M6800 Microcomputer System that also included serial and parallel interface ICs, RAM, ROM and other support chips. A significant design feature was that the M6800 family of ICs required only a single five-volt power supply at a time when most other microprocessors required three voltages. The M6800 Microcomputer System was announced in March 1974 and was in full production by the end of that year.

In computer architecture, 8-bit integers or other data units are those that are 8 bits wide. Also, 8-bit central processing unit (CPU) and arithmetic logic unit (ALU) architectures are those that are based on registers or data buses of that size. Memory addresses for 8-bit CPUs are generally larger than 8-bit, usually 16-bit. 8-bit microcomputers are microcomputers that use 8-bit microprocessors.

<span class="mw-page-title-main">VIC-20</span> 1981 home computer by Commodore

The VIC-20 is an 8-bit home computer that was sold by Commodore Business Machines. The VIC-20 was announced in 1980, roughly three years after Commodore's first personal computer, the PET. The VIC-20 was the first computer of any description to sell one million units. It was described as "one of the first anti-spectatorial, non-esoteric computers by design...no longer relegated to hobbyist/enthusiasts or those with money, the computer Commodore developed was the computer of the future."

<span class="mw-page-title-main">Commodore PET</span> Personal computer system

The Commodore PET is a line of personal computers produced starting in 1977 by Commodore International. A single all-in-one case combines a MOS Technology 6502 microprocessor, Commodore BASIC in read-only memory, keyboard, monochrome monitor, and, in early models, a cassette deck.

<span class="mw-page-title-main">Exidy Sorcerer</span> 1978 home computer system

The Sorcerer is a home computer system released in 1978 by the video game company Exidy, later under their Exidy Systems subsidiary. Based on the Zilog Z80 and the general layout of the emerging S-100 standard, the Sorcerer was comparatively advanced when released, especially when compared to the contemporary more commercially successful Commodore PET and TRS-80. The basic design was proposed by Paul Terrell, formerly of the Byte Shop, a pioneering computer store.

<span class="mw-page-title-main">Kansas City standard</span> Data storage standard

The Kansas City standard (KCS), or Byte standard, is a data storage protocol for standard cassette tapes at 300 bits per second. It originated in a symposium sponsored by Byte magazine in November 1975 in Kansas City, Missouri to develop a standard for the storage of digital microcomputer data on inexpensive consumer quality cassettes. The first systems based on the standard appeared in 1976.

<span class="mw-page-title-main">ELF II</span>

The Netronics ELF II was an early microcomputer trainer kit featuring the RCA 1802 microprocessor, 256 bytes of RAM, DMA-based bitmap graphics, hexadecimal keypad, two digit hexadecimal LED display, a single "Q" LED, and 5 expansion slots. The system was developed and sold by Netronics Research and Development Limited in New Milford, CT, USA.

<span class="mw-page-title-main">AIM-65</span>

The Rockwell AIM-65 computer is a development computer introduced in 1978 based on the MOS Technology 6502 microprocessor. The AIM-65 is essentially an expanded KIM-1 computer. Available software included a line-oriented machine code monitor, BASIC interpreter, assembler, Pascal, PL/65, and FORTH development system. Available hardware included a floppy disk controller and a backplane for expansion.

<span class="mw-page-title-main">Compukit UK101</span> A clone of the Ohio Scientific Superboard II single-board computer

The Compukit UK101 microcomputer (1979) is a kit clone of the Ohio Scientific Superboard II single-board computer, with a few enhancements for the UK market - notably replacing the 24×24 screen display with a more useful 48×16 layout working at UK video frequencies. The video output is black and white with 256 semigraphic characters generated by a two kilobyte ROM. It has no bit-mapped graphics capability. The video is output through a UHF modulator, designed to connect to a TV set.

<span class="mw-page-title-main">Acorn System 1</span> Early 8-bit microcomputer

The Acorn System 1, initially called the Acorn Microcomputer (Micro-Computer), was an early 8-bit microcomputer for hobbyists, based on the MOS 6502 CPU, and produced by British company Acorn Computers from 1979.

<span class="mw-page-title-main">Tangerine Microtan 65</span>

The Tangerine Microtan 65 was a 6502 based single board microcomputer, first sold in 1979, which could be expanded into, what was for its day, a comprehensive and powerful system. The design became the basis for what later became the ORIC ATMOS and later computers, which has similar keyboard addressing and tape I/O as in the Microtan 65. The Microtan 65 has a single step function that can be used for debugging at the hardware level. The computer was available as ready-built boards or as kits consisting of board and components requiring soldering together.

<span class="mw-page-title-main">Acorn MOS</span> Computer operating system

The Machine Operating System (MOS) or OS is a discontinued computer operating system (OS) used in Acorn Computers' BBC computer range. It included support for four-channel sound, graphics, file system abstraction, and digital and analogue input/output (I/O) including a daisy-chained expansion bus. The system was single-tasking, monolithic and non-reentrant.

<span class="mw-page-title-main">SYM-1</span>

The SYM-1 is a single board "trainer" computer produced by Synertek Systems in 1975. It was designed by Ray Holt. Originally called the VIM-1, that name was later changed to SYM-1.

The sideways address space on the Acorn BBC Microcomputer, Electron and Master-series microcomputer was Acorn's bank switching implementation, providing for permanent system expansion in the days before hard disk drives or even floppy disk drives were commonplace. Filing systems, application and utility software, and drivers were made available as sideways ROMs, and extra RAM could be fitted via the sideways address space.

<span class="mw-page-title-main">Dick Smith Super-80 Computer</span>

The Dick Smith Super-80 was a Zilog Z80 based kit computer developed as a joint venture between Electronics Australia magazine and Dick Smith Electronics.

Each time Intel launched a new microprocessor, they simultaneously provided a system development kit (SDK) allowing engineers, university students, and others to familiarise themselves with the new processor's concepts and features. The SDK single-board computers allowed the user to enter object code from a keyboard or upload it through a communication port, and then test run the code. The SDK boards provided a system monitor ROM to operate the keyboard and other interfaces. Kits varied in their specific features but generally offered optional memory and interface configurations, a serial terminal link, audio cassette storage, and EPROM program memory. Intel's Intellec development system could download code to the SDK boards.

PolyMorphic Systems was a manufacturer of microcomputer boards and systems based on the S-100 bus. Their products included the Poly-88 and the System 8813. The company was incorporated in California in 1976 as Interactive Products Corporation d/b/a PolyMorphic Systems. It was initially based in Goleta, then Santa Barbara, California.

<span class="mw-page-title-main">Gigatron TTL</span>

The Gigatron TTL is a retro-style 8-bit computer, where the CPU is implemented by a set of TTL chips instead of a single microprocessor, imitating the hardware present in early arcades. Its target is the computing enthusiasts, for studying or hobby purposes.

References

  1. Butterfield, Jim; Ockers, Stan; Rehnke, Eric (1977). The First Book of KIM. Hayden Book. ISBN   0-8104-5119-0.
  2. Simpson, Richard (May 1976). "A Date with KIM". BYTE. Vol. 1, no. 9. Byte Publications Inc. p. 14.
  3. MCS6500 Microcomputer Family Hardware Manual. MOS Technology Inc. January 1976. p. 71.
  4. "MOS KIM-1". BYTE (advertisement). Vol. 1, no. 8. Byte Publications Inc. April 1976. p. 15.
  5. "What's New, KIM-o-sabee?". BYTE. Vol. 1, no. 8. Byte Publications Inc. April 1976. p. 14.
  6. Lancaster, Don (July 1977). "Build the TVT-6: A Low-Cost Direct Video Display". Popular Electronics. Vol. 12, no. 1. Ziff-Davis Publishing. pp. 47–52.
  7. Lancaster, Don (1978). The Cheap Video Cookbook. Howard W Sams. ISBN   0-672-21524-1.
  8. 1 2 3 "Users Manual V1.0". 091208 users.telenet.be