Tilletia indica | |
---|---|
Scientific classification | |
Kingdom: | |
Division: | |
Class: | |
Order: | |
Family: | |
Genus: | |
Species: | T. indica |
Binomial name | |
Tilletia indica Mitra, (1931) | |
Synonyms | |
Neovossia indica |
Karnal bunt (also known as partial bunt) is a fungal disease of wheat, durum wheat, and triticale. The smut fungus Tilletia indica, a basidiomycete, invades the kernels and obtains nutrients from the endosperm, leaving behind waste products with a disagreeable odor that makes bunted kernels too unpalatable for use in flour or pasta. While Karnal bunt generally does not lead to devastating crop losses, it has the potential to dramatically decrease yield, and poses additional economic concerns through quarantines which limit the export of suspected infectious wheat products from certain areas, including the U.S. Several chemical control methods exist for Karnal bunt of wheat, but much work remains to be done in identifying resistant host varieties.
Teliospore ultrastructure was characterized by electron microscopy by Roberson & Luttrell in 1987. [1] [2]
Karnal bunt attacks durum wheat, rye, and triticale, a hybrid of wheat and rye. Despite its preference for a common crop, Karnal bunt can be extremely difficult to diagnose in the field for many reasons. First, not all kernels on a plant head will be infected, and thus infected plants are not as readily identifiable. This distribution is the reason for Karnal bunt's being referred to as partial bunt. Another factor which makes Karnal bunt difficult to readily diagnose in the field is the fact that most infected kernels do not show symptoms prior to maturity.
The disease produces dark color and a fishy smell on infected kernels. Usually only the germ end of the kernel will show symptoms, but occasionally the entire kernel may appear diseased. The darkening of the kernel is a result of the kernel tissue being converted in a teliospore mass by the fungus. Another symptom is referred to as the "canoe symptom" as in the process of replacing the healthy kernel with teliospores, the disease tends to hollow out host kernels, resulting in a canoe shape. [3] While the dark teliospores of the fungus may be diagnostic, diagnosis of Karnal bunt poses the added difficulty of differentiating between Karnal bunt from other infections which also result in the aforementioned symptoms, such as black point, common bunt, and dwarf bunt. [4]
The disease is primarily spread through contaminated seed or farm equipment, although it may also be carried short distances by the wind, especially following the burning of wheat fields. Evidence of the importance of airborne dispersal of Tilletia indica was demonstrated by Halasz et al. in 2014 when they discovered a strong correlation between teliospore concentration in the air above a wheat crop and the subsequent number of infected wheat kernels. The researchers concluded that this airborne spread of teliospores could also result in post-harvest disease development. [5] The fungal spores can then remain viable for several years, germinating when weather conditions become favorable for development. [6] Once the spores germinate, they infect the wheat flowers and develop large masses of spores on the embryo end of the kernels (the entire kernel is not usually affected). [7]
In preferred weather conditions, a teliospore which has successfully attached to a susceptible host will germinate to produce what is known as a promycelium. At the apex of this structure, then, can be found 65–180 primary sporidia. Secondary sporidia can then either bud from the primary sporidia or from the fungal threads of the mycelium itself. These secondary sporidia are responsible for infecting young host plants through the ovary wall in the flowering stage. Secondary sporidia accomplish this by penetrating the epidermis of host glumes via germ tubes. Sporidia are then able to enter the maturing kernels and leave vast numbers of teliospores where healthy kernel tissue used to be. During harvest teliospores fall from the kernels to the soil from which point they may be carried elsewhere by wind or tools, thereby restarting the disease cycle. [8]
Karnal bunt is named after Karnal, India, where the disease was first discovered on a wheat crop in 1931. Since then, the disease has been reported in all major wheat-growing states of India, Pakistan, Afghanistan, Mexico, and certain areas of the Southwestern United States such as New Mexico, Arizona, and parts of Texas. [4]
Karnal bunt pathogenesis is heavily dependent on weather conditions. Relative humidity over 70% favors teliospore development. Furthermore, daytime temperatures in the range of 18–24 °C, and soil temperatures in the range of 17–21 °C also increase the severity of Karnal bunt. [6]
Control of Tilletia indica has proven challenging for many reasons. First, since teliospores do not infect kernels systematically, chemical control via seed treatments has not been a viable solution. Several other methods, such as delaying planting so as to avoid the weather conditions which favor teliospore germination, have been proven to be effective to some extent, but also pose the risk of reducing yield. Other cultural controls such as crop-rotation may be practical as the planting of non-host species for several years may reduce the number of teliospores in given field significantly. [9]
Chemical control methods also hold promise for controlling Karnal bunt of wheat. In a 1986 study, Smilanick et al. were able to eradicate over 80% of Tilletia indica infection in wheat following two foliar applications of the fungicide propiconozole. The researchers had the same success using four foliar applications of the fungicides mancozeb or copper hydroxide. These chemical treatments were most effective when applied to host foliage 72 hours post-infection, but were not effective at all when applied to host seeds. [10]
In 2009 researchers investigated the Muscodor albus fungus as a biocontrol agent for Karnal bunt of wheat. While biofumigation with this fungus was effective in reducing the capacity of other species of Tellitia to cause disease, this method was ineffective against the dormant teliospores of Tellitia indica. [11] In a similar effort, researchers tested a variety of plant extracts in the hopes of finding a non-chemical control method of Karnal bunt of wheat. The researchers found extract of Acalypha indica and Lantana camara, when sprayed on wheat leaves, to reduce the number of infected plants by 65%. [12]
As is likely the case for any plant disease, host resistance is the most practical and desired control method. Researchers analyzed the HD29 cultivar of Triticum aestivum , or common wheat, in order to explore the possibility of control via host resistance. Researchers identified three genes coding for resistance to the Ni8 isolate of the disease, and two coding for resistance to the Ni7 isolate. The two genes coding for Ni7 resistance also code for Ni8 resistance, meaning that it may be possible to identify a common gene which may confer resistance to T. indica. [13]
Karnal bunt accounts for yield losses of approximately 0.5% annually, which is negligible. Some fields of particularly susceptible wheat cultivars in India, however, have suffered losses of up to 40% in the past, but such events are rare. Significant economic losses in wheat crops occur due to quarantine and other export restrictions placed on infected areas. [14] Furthermore, Karnal bunt of wheat poses no threat to human life in the United States as regulations deem wheat containing more than 3% bunted kernels unfit for human consumption and these crops are instead used in animal feed. [4]
Appearance of the disease in the United States in early 1996 resulted in the Animal and Plant Health Inspection Service (APHIS) implementing an emergency quarantine, inspection, and certification program for wheat moving out of the infested areas, along with regulations on sanitizing machinery and storage facilities. Many foreign countries have a zero tolerance for karnal bunt in import shipments. As one of the world's top exporters of wheat, such restrictions negatively impact the U.S. economy. [15]
Rusts are fungal plant pathogens of the order Pucciniales causing plant fungal diseases.
Corn smut is a plant disease caused by the pathogenic fungus Ustilago maydis. One of several cereal crop pathogens called smut, the fungus forms galls on all above-ground parts of corn species such as maize and teosinte. The infected corn is edible; in Mexico, it is considered a delicacy called huitlacoche, often eaten as a filling in quesadillas and other tortilla-based foods, as well as in soups.
Powdery mildew is a fungal disease that affects a wide range of plants. Powdery mildew diseases are caused by many different species of ascomycete fungi in the order Erysiphales. Powdery mildew is one of the easier plant diseases to identify, as its symptoms are quite distinctive. Infected plants display white powdery spots on the leaves and stems. The lower leaves are the most affected, but the mildew can appear on any above-ground part of the plant. As the disease progresses, the spots get larger and denser as large numbers of asexual spores are formed, and the mildew may spread up and down the length of the plant.
The smuts are multicellular fungi characterized by their large numbers of teliospores. The smuts get their name from a Germanic word for 'dirt' because of their dark, thick-walled, and dust-like teliospores. They are mostly Ustilaginomycetes and comprise seven of the 15 orders of the subphylum. Most described smuts belong to two orders, Ustilaginales and Tilletiales. The smuts are normally grouped with the other basidiomycetes because of their commonalities concerning sexual reproduction.
Blumeria graminis is a fungus that causes powdery mildew on grasses, including cereals. It is the only species in the genus Blumeria. It has also been called Erysiphe graminis and Oidium monilioides or Oidium tritici.
Sugarcane smut is a fungal disease of sugarcane caused by the fungus Sporisorium scitamineum. The disease is known as culmicolous, which describes the outgrowth of fungus of the stalk on the cane. It attacks several sugarcane species and has been reported to occur on a few other grass species as well, but not to a critical amount. The most recognizable characteristic of this disease is a black or gray growth that is referred to as a "smut whip". Resistance to sugarcane smut is the best course of action for management, but also the use of disease free seed is important. On smaller scale operations treatments using hot water and removing infected plants can be effective. The main mode of spore dispersal is the wind but the disease also spreads through the use of infected cuttings. Sugarcane smut is a devastating disease in sugarcane growing areas globally.
Common bunt, also known as hill bunt, Indian bunt, European bunt, stinking smut or covered smut, is a disease of both spring and winter wheats. It is caused by two very closely related fungi, Tilletia tritici and T. laevis.
Loose smut of barley is caused by Ustilago nuda. It is a disease that can destroy a large proportion of a barley crop. Loose smut replaces grain heads with smut, or masses of spores which infect the open flowers of healthy plants and grow into the seed, without showing any symptoms. Seeds appear healthy and only when they reach maturity the following season is it clear that they were infected. Systemic fungicides are the major control method for loose smut.
Gibberella zeae, also known by the name of its anamorph Fusarium graminearum, is a fungal plant pathogen which causes fusarium head blight (FHB), a devastating disease on wheat and barley. The pathogen is responsible for billions of dollars in economic losses worldwide each year. Infection causes shifts in the amino acid composition of wheat, resulting in shriveled kernels and contaminating the remaining grain with mycotoxins, mainly deoxynivalenol (DON), which inhibits protein biosynthesis; and zearalenone, an estrogenic mycotoxin. These toxins cause vomiting, liver damage, and reproductive defects in livestock, and are harmful to humans through contaminated food. Despite great efforts to find resistance genes against F. graminearum, no completely resistant variety is currently available. Research on the biology of F. graminearum is directed towards gaining insight into more details about the infection process and reveal weak spots in the life cycle of this pathogen to develop fungicides that can protect wheat from scab infection.
Tilletia caries is a basidiomycete that causes common bunt of wheat. The common names of this disease are stinking bunt of wheat and stinking smut of wheat. This pathogen infects wheat, rye, and various other grasses. T. caries is economically and agriculturally important because it reduces both the wheat yield and grain quality.
Urocystis agropyri is a fungal plant pathogen that causes flag smut on wheat.
Puccinia asparagi is the causative agent of asparagus rust. It is an autoecious fungus, meaning that all stages of its life cycle – pycniospores, aeciospores, and teliospores – all develop upon the same host plant . Rust diseases are among the most destructive plant diseases, known to cause famine following destruction of grains, vegetables, and legumes. Asparagus rust occurs wherever the plant is grown and attacks asparagus plants during and after the cutting season. Asparagus spears are usually harvested before extensive rust symptoms appear. Symptoms are first noticeable on the growing shoots in early summer as light green, oval lesions, followed by tan blister spots and black, protruding blisters later in the season. The lesions are symptoms of Puccinia asparagi during early spring, mid-summer and later summer to fall, respectively. Severe rust infections stunt or kill young asparagus shoots, causing foliage to fall prematurely, and reduce the ability of the plant to store food reserves. The Puccinia asparagi fungus accomplishes this by rust lowering the amounts of root storage metabolites. The infected plant has reduced plant vigor and yield, often leading to death in severe cases. Most rust diseases have several stages, some of which may occur on different hosts; however, in asparagus rust all the life stages occur on asparagus. Because of this, many observers mistake the different stages of the Puccinia asparagi life cycle as the presence of different diseases. The effects of Puccinia asparagi are present worldwide wherever asparagus is being grown. Asparagus rust is a serious threat to the asparagus industry.
Uromyces viciae-fabae var. viciae-fabae is a plant pathogen commonly known as faba-bean rust. The rust is distinguished by the typical rust-like marks on the stem and leaves, causing defoliation and loss of photosynthetic surface along with reduction in yield. The disease is fungal and is autoecious meaning it has one plant host. The rust of faba beans is macrocyclic, or contains 5 spores during its life cycle.
Sporisorium sorghi, commonly known as sorghum smut, is a plant pathogen that belongs to the Ustilaginaceae family. This fungus is the causative agent of covered kernel smut disease and infects sorghum plants all around the world such as Sorghum bicolor (sorghum), S. sudanense, S. halepense and Sorghumvulgare var. technichum (broomcorn). Ineffective control of S. sorghi can have serious economic and ecological implications.
Sporisorium reilianum Langdon & Full., (1978), previously known as Sphacelotheca reiliana, and Sporisorium reilianum, is a species of biotrophic fungus in the family Ustilaginaceae. It is a plant pathogen that infects maize and sorghum.
Tilletia barclayana is a plant pathogen that infects rice, signalgrass, pearl millet, and crabgrass. The pathogen corrupts the crops it infects, causing black busts to appear on the crops, which then become discolored and smutted.
Tilletia horrida, rice kernel smut, caryopsis smut, black smut, or grain smut, is a fungal rice disease believed to only affect the Oryza genus. It presents as a partial bunt.
Puccinia horiana is a species of fungus that causes chrysanthemum white rust, is a disease of plant species of the genus Chrysanthemum.
Salmacisia is a fungal genus in the family Tilletiaceae. It is a monotypic genus, containing the single species Salmacisia buchloëana, first described as Tilletia buchloëana in 1889, and renamed in 2008. Plants infected by the fungus undergo a phenomenon known as "parasitically induced hermaphroditism", whereby ovary development is induced in otherwise male plants. Because of the pistil-inducing effects of the fungus, the authors have named the species pistil smut; it is the only species in the order Tilletiales known to have hermaphroditic effects.
The Plant Pathology Herbarium and Insect Collection is a Queensland Government scientific collection based in Queensland, Australia. Based at the Department of Agriculture and Fisheries, the collection holds specimens of known fungal pathogens of plants grown in Queensland, as well as insect pests that occur in the state. In 1966 the herbarium was given the abbreviation BRIP. This abbreviation has official status in that it was the first listed in Index Herbarium. The abbreviation is not an acronym where each letter represents a word, but rather derived from the words 'Brisbane' and 'Pathology'.