Land restoration

Last updated

Land restoration, which may include renaturalisation or rewilding, is the process of ecological restoration of a site to a natural landscape and habitat, safe for humans, wildlife, and plant communities. Ecological destruction, to which land restoration serves as an antidote, is usually the consequence of pollution, deforestation, salination or natural disasters. Land restoration is not the same as land reclamation, where existing ecosystems are altered or destroyed to give way for cultivation or construction. Land restoration can enhance the supply of valuable ecosystem services that benefit people.

Contents

Auwahi Dryland Forest Restoration Project on the slopes of Hale'akala on the island of Maui, Hawaii, 2010 Auwahi Dryland Forest.JPG
Auwahi Dryland Forest Restoration Project on the slopes of Hale'akala on the island of Maui, Hawaii, 2010

Repairing damaged land

Land restoration can include the process of cleaning up and rehabilitating a site that has sustained environmental degradation, such as those by natural cause (desertification) and those caused by human activity (strip mining), to restore that area back to its natural state as a wildlife home and balanced habitat.

Countering desertification

Jojoba (Simmondsia chinensis) plantations, such as those shown, have played a role in combating edge effects of desertification in the Thar desert, India. GreeningdesertTharIndia.jpg
Jojoba (Simmondsia chinensis) plantations, such as those shown, have played a role in combating edge effects of desertification in the Thar desert, India.

Land reclamation in deserts involves

Stabilizing and fixating the soil is usually done in several phases.

The first phase is fixating the soil to such extent that dune movement is ceased. This is done by grasses, and plants providing wind protection such as shelterbelts, windbreaks and woodlots. Shelterbelts are wind protections composed of rows of trees, arranged perpendicular to the prevailing wind, while woodlots are more extensive areas of woodland. [1]

The second phase involves improving/enriching the soil by planting nitrogen-fixating plants and using the soil immediately to grow crops. Nitrogen fixating plants used include clover, yellow mustard, beans, etc., and food crops include wheat, barley, beans, peas, sweet potatoes, date, olives, limes, figs, apricot, guava, tomato, certain herbs, etc. Regardless of the cover crop used, the crops (not including any trees) are each year harvested and/or plowed into the soil (e.g. with clover). In addition, each year the plots are used for another type of crop (known as crop rotation) to prevent depleting the soil on specific trace elements.

A recent development is the Seawater Greenhouse and Seawater Forest. This proposal is to construct these devices on coastal deserts in order to create fresh water and grow food. [2] A similar approach is the Desert Rose concept. [3] These approaches are of widespread applicability, since the relative costs of pumping large quantities of seawater inland are low. [4]

Another related concept is ADRECS – a proposed system for rapidly delivering soil stabilisation and re-forestation techniques coupled with renewable energy generation. [5]

See also

Related Research Articles

<span class="mw-page-title-main">Arable land</span> Land capable of being ploughed and used to grow crops

Arable land is any land capable of being ploughed and used to grow crops. Alternatively, for the purposes of agricultural statistics, the term often has a more precise definition:

Arable land is the land under temporary agricultural crops, temporary meadows for mowing or pasture, land under market and kitchen gardens and land temporarily fallow. The abandoned land resulting from shifting cultivation is not included in this category. Data for 'Arable land' are not meant to indicate the amount of land that is potentially cultivable.

<span class="mw-page-title-main">Desertification</span> Process by which fertile areas of land become increasingly arid

Desertification is a type of land degradation in drylands in which biological productivity is lost due to natural processes or induced by human activities whereby fertile areas become arid. It is the spread of arid areas caused by a variety of factors, such as overexploitation of soil as a result of human activity and the effects of climate change. Geographic areas most affected include the Sahel region in Africa, the Gobi Desert and Mongolia in Asia as well as parts of South America. Drylands occupy approximately 40–41% of Earth's land area and are home to more than 2 billion people.

Biosalinity is the study and practice of using saline (salty) water for irrigating agricultural crops.

<span class="mw-page-title-main">Halophyte</span> Salt-tolerant plant

A halophyte is a salt-tolerant plant that grows in soil or waters of high salinity, coming into contact with saline water through its roots or by salt spray, such as in saline semi-deserts, mangrove swamps, marshes and sloughs, and seashores. The word derives from Ancient Greek ἅλας (halas) 'salt' and φυτόν (phyton) 'plant'. Halophytes have different anatomy, physiology and biochemistry than glycophytes. An example of a halophyte is the salt marsh grass Spartina alterniflora. Relatively few plant species are halophytes—perhaps only 2% of all plant species. Information about many of the earth's halophytes can be found in the ehaloph database.

Soil retrogression and degradation are two regressive evolution processes associated with the loss of equilibrium of a stable soil. Retrogression is primarily due to soil erosion and corresponds to a phenomenon where succession reverts the land to its natural physical state. Degradation is an evolution, different from natural evolution, related to the local climate and vegetation. It is due to the replacement of primary plant communities by the secondary communities. This replacement modifies the humus composition and amount, and affects the formation of the soil. It is directly related to human activity. Soil degradation may also be viewed as any change or ecological disturbance to the soil perceived to be deleterious or undesirable.

<span class="mw-page-title-main">Soil salinity</span> Salt content in the soil

Soil salinity is the salt content in the soil; the process of increasing the salt content is known as salinization. Salts occur naturally within soils and water. Salination can be caused by natural processes such as mineral weathering or by the gradual withdrawal of an ocean. It can also come about through artificial processes such as irrigation and road salt.

<span class="mw-page-title-main">Renewable resource</span> Natural resource that is replenished relatively quickly

A renewable resource is a natural resource which will replenish to replace the portion depleted by usage and consumption, either through natural reproduction or other recurring processes in a finite amount of time in a human time scale. When the recovery rate of resources is unlikely to ever exceed a human time scale, these are called perpetual resources. Renewable resources are a part of Earth's natural environment and the largest components of its ecosphere. A positive life-cycle assessment is a key indicator of a resource's sustainability.

<span class="mw-page-title-main">Windbreak</span> Rows of trees or shrubs planted to provide shelter from the wind

A windbreak (shelterbelt) is a planting usually made up of one or more rows of trees or shrubs planted in such a manner as to provide shelter from the wind and to protect soil from erosion. They are commonly planted in hedgerows around the edges of fields on farms. If designed properly, windbreaks around a home can reduce the cost of heating and cooling and save energy. Windbreaks are also planted to help keep snow from drifting onto roadways or yards. Farmers sometimes use windbreaks to keep snow drifts on farm land that will provide water when the snow melts in the spring. Other benefits include contributing to a microclimate around crops, providing habitat for wildlife, and, in some regions, providing wood if the trees are harvested.

<span class="mw-page-title-main">Land degradation</span> Gradual destruction of land

Land degradation is a process in which the value of the biophysical environment is affected by a combination of human-induced processes acting upon the land. It is viewed as any change or disturbance to the land perceived to be deleterious or undesirable. Natural hazards are excluded as a cause; however human activities can indirectly affect phenomena such as floods and bush fires.

<span class="mw-page-title-main">Land development</span> Landscape alteration

Land development is the alteration of landscape in any number of ways such as:

<span class="mw-page-title-main">Soil conservation</span> Preservation of soil nutrients

Soil conservation is the prevention of loss of the topmost layer of the soil from erosion or prevention of reduced fertility caused by over usage, acidification, salinization or other chemical soil contamination.

<span class="mw-page-title-main">Revegetation</span>

Revegetation is the process of replanting and rebuilding the soil of disturbed land. This may be a natural process produced by plant colonization and succession, manmade rewilding projects, accelerated process designed to repair damage to a landscape due to wildfire, mining, flood, or other cause. Originally the process was simply one of applying seed and fertilizer to disturbed lands, usually grasses or clover. The fibrous root network of grasses is useful for short-term erosion control, particularly on sloping ground. Establishing long-term plant communities requires forethought as to appropriate species for the climate, size of stock required, and impact of replanted vegetation on local fauna. The motivations behind revegetation are diverse, answering needs that are both technical and aesthetic, but it is usually erosion prevention that is the primary reason. Revegetation helps prevent soil erosion, enhances the ability of the soil to absorb more water in significant rain events, and in conjunction reduces turbidity dramatically in adjoining bodies of water. Revegetation also aids protection of engineered grades and other earthworks.

The Great Green Wall, officially known as the Three-North Shelter Forest Program, also known as the Three-North Shelterbelt Program, is a series of human-planted windbreaking forest strips (shelterbelts) in China, designed to hold back the expansion of the Gobi Desert, and provide timber to the local population. The program started in 1978, and is planned to be completed around 2050, at which point it will be 4,500 kilometres (2,800 mi) long.

<span class="mw-page-title-main">Farmer-managed natural regeneration</span> Technique to combat deforestation and desertification

Farmer-managed natural regeneration (FMNR) is a low-cost, sustainable land restoration technique used to combat poverty and hunger amongst poor subsistence farmers in developing countries by increasing food and timber production, and resilience to climate extremes. It involves the systematic regeneration and management of trees and shrubs from tree stumps, roots and seeds. FMNR was developed by the Australian agricultural economist Tony Rinaudo in the 1980s in West Africa. The background and development are described in Rinaudo's book The Forest Underground.

<span class="mw-page-title-main">Soil salinity control</span> Controlling the problem of soil salinity

Soil salinity control refers to controlling the process and progress of soil salinity to prevent soil degradation by salination and reclamation of already salty (saline) soils. Soil reclamation is also known as soil improvement, rehabilitation, remediation, recuperation, or amelioration.

A seawater greenhouse is a greenhouse structure that enables the growth of crops and the production of fresh water in arid regions which constitute about one third of the Earth's land area. This in response to global water scarcity, peak water and soil becoming salted. The system uses seawater and solar energy, and has a similar structure to the pad-and-fan greenhouse, but with additional evaporators and condensers. The seawater is pumped into the greenhouse to create a cool and humid environment, the optimal conditions for the cultivation of temperate crops. The freshwater is produced in a condensed state created by the solar desalination principle, which removes salt and impurities. Finally, the remaining humidified air is expelled from the greenhouse and used to improve growing conditions for outdoor plants.

<span class="mw-page-title-main">Desert greening</span> Process of man-made reclamation of deserts

Desert greening is the process of afforestation or revegetation of deserts for ecological restoration (biodiversity), sustainable farming and forestry, but also for reclamation of natural water systems and other ecological systems that support life. The term "desert greening" is intended to apply to both cold and hot arid and semi-arid deserts. It does not apply to ice capped or permafrost regions. It pertains to roughly 32 million square kilometres of land. Deserts span all seven continents of the Earth and make up nearly a fifth of the Earth's landmass, areas that recently have been increasing in size. As some of the deserts expand and global temperatures increase, the different methods of desert greening may provide a potential solution. Planting suitable flora in deserts has a range of environmental benefits from carbon sequestration to providing habitat for native desert fauna to generating employment opportunities to creation of habitable areas for local communities. The prevention of land desertification is one of 17 sustainable development objectives outlined by the United Nations, desert greening is a process that aims to not only combat desertification but to foster an environment where plants can create a sustainable environment for all forms of life while preserving its integrity.

<span class="mw-page-title-main">Biosaline agriculture</span> Production of crops in salt-rich conditions

Biosaline agriculture is the production and growth of plants in saline rich groundwater and/or soil. In water scarce locations, salinity poses a serious threat to agriculture due to its toxicity to most plants. Abiotic stressors such as salinity, extreme temperatures, and drought make plant growth difficult in many climate regions. Integration of biosaline solutions is becoming necessary in arid and semiarid climates where freshwater abundance is low and seawater is ample. Salt-tolerant plants that flourish in high-salinity conditions are called halophytes. Halophyte implementation has the potential to restore salt-rich environments, provide for global food demands, produce medicine and biofuels, and conserve fresh water.

<span class="mw-page-title-main">Desertification in Africa</span> Causes and effects of land degradation

Desertification in Africa is a form of land degradation that involves the conversion of productive land into desert or arid areas. This issue is a pressing environmental concern that poses a significant threat to the livelihoods of millions of people in Africa who depend on the land for subsistence. Geographical and environmental studies have recently coined the term desertification. Desertification is the process by which a piece of land becomes a desert, as the word desert implies. The loss or destruction of the biological potential of the land is referred to as desertification. It reduces or eliminates the potential for plant and animal production on the land and is a component of the widespread ecosystem degradation. Additionally, the term desertification is specifically used to describe the deterioration of the world's drylands, or its arid, semi-arid, and sub-humid climates. These regions may be far from the so-called natural or climatic deserts, but they still experience irregular water stress due to their low and variable rainfall. They are especially susceptible to damage from excessive human land use pressure. The causes of desertification are a combination of natural and human factors, with climate change exacerbating the problem. Despite this, there is a common misconception that desertification in Africa is solely the result of natural causes like climate change and soil erosion. In reality, human activities like deforestation, overgrazing, and unsustainable agricultural practices contribute significantly to the issue. Another misconception is that, desertification is irreversible, and that degraded land will forever remain barren wastelands. However, it is possible to restore degraded land through sustainable land management practices like reforestation and soil conservation. A 10.3 million km2 area, or 34.2% of the continent's surface, is at risk of desertification. If the deserts are taken into account, the affected and potentially affected area is roughly 16.5 million km2 or 54.6% of all of Africa. 5.7 percent of the continent's surface is made up of very severe regions, 16.2 percent by severe regions, and 12.3 percent by moderate to mild regions.

References

  1. Desert reclamation
  2. The Sahara Project a new source of freshwater food and energy
  3. Desert Rose - Claverton Group Energy Conference, Bath October 2008
  4. "what power is needed to pump seawater to the middle of the Gobi Desert for desalination in the SeaWater Greenhouse?".
  5. http://www.claverton-energy.com/download/320/%5B%5D