Lexington Limestone

Last updated
Lexington Limestone
Stratigraphic range: Late Ordovician, [1] [2] 454–451  Ma
O
S
D
C
P
T
J
K
Pg
N
Type Formation
Sub-units11 members [3]
Underlies Clays Ferry Formation [3]
Overlies High Bridge Group [3]
ThicknessAround 320 feet in core regions, thins to around 200 feet northward and southward [3]
Lithology
Primary Limestone [2] [3]
Other Shale [2] [3]
Location
RegionFlag of Kentucky.svg  Kentucky
CountryFlag of the United States.svg  United States
Type section
Named for Lexington, Kentucky
Named byM.R. Campbell [4]
Year defined1898 [4]

The Lexington Limestone is a prominent geologic formation that constitutes a large part of the late Ordovician bedrock of the inner Bluegrass region in Kentucky. Named after the city of Lexington, the geologic formation has heavily influenced both the surface topography and economy of the region. [5]

Contents

It overlies the approximately Middle to Late Ordovician High Bridge Group, which is only exposed in some valleys of the Kentucky River, [6] and underlies the Clays Ferry Formation. Since the time of its deposition spans several million years which were accompanied by constant sea level and topographical changes, the lithology of the Lexington Limestone varies significantly with geographic location and stratigraphic position within the rock column. Due to this, it is divided into 11 sub-units which sometimes complexly grade into and intertongue with each other. The formation is largely composed of limestone, however shale is also usually present in varying amounts, and in some sub-units is dominant. [3]

Geological setting

Around 450 million years ago, during the Late Ordovician period, much of what is now eastern Kentucky was a shallow, tropical carbonate platform located on the southern fringes of Laurentia [7] since the craton was rotated around 45 degrees clockwise compared to its modern position. As a result of the ongoing Taconic orogeny, the region was cut off from the mainland by the deep Sebree trough. [8] [9] The trough served as a passage for cold, nutrient-rich oceanic water from the Iapetus ocean, which would mix with the warm surface waters of the surrounding carbonate platforms, enabling a large number of bryozoan-brachiopod-echinoderm patch reefs to develop throughout the area. [10] Hence, several parts of the Lexington Limestone are characteristically rich in fossil content.

In preceding periods, particularly during the deposition of the Tyrone Limestone, most of the region was covered in tidal mudflats due to low sea levels. The lower parts of the Lexington Limestone, the Curdsville and Logana members, are characterized by the continuous encroachment of the sea onto the vast tidal flats, culminating in a period where much of the platform was too deep for an adequate supply of oxygen to be retained or for photosynthesis to be performed effectively. [3]

Eventually, however, water levels began to fall, and a plethora of ecological environments emerged, ranging from extremely shallow and turbulent sandbars, through mid-depth waters highly suitable for patch reef development, to dark, anoxic depressions in the terrain. Each of these environments facilitated the deposition of distinct facies of varying lithological characters. Due to the lack of significant sources of terrigenous sediments, most sedimentary material was supplied through carbonate production of the local ecosystem.

Subdivisions

Curdsville Limestone

The Curdsville Limestone Member is the oldest and lowermost member of the Lexington formation. It was deposited as the sea level rose and transgressed across the tidal flats that dominated the region during the deposition of the preceding Tyrone Limestone. It is predominately composed of calcarenite initially deposited in turbulent, shallow water, but as the water column deepened, grain sizes became increasingly smaller. Due to heavy wave action, most organic debris in the lower part of the formation was broken up and heavily altered, making fossils rare and of poor quality. However, due to calmer conditions, fossils become more common in the upper parts of the member, when the water was not deep enough to be anoxic, but too deep for most wave-action. Whole and broken silicified fossils of brachiopods and gastropods are known, along with the occasional bivalve or trilobite.

Logana Member

The Logana Member was deposited during the time when the earlier deepening trend of the sea level reached its apex. It consists of an alternation of fine limestone and shale, with winnowed organic debris periodically arriving from shallower waters and covering a terrigenous, muddy substrate that continuously accumulated in the deep waters. The water level was normally too deep to provide an adequate supply of oxygen, hence fossils are rare, and mostly restricted to Cryptolithus trilobites (which are characteristic of deep-water environments). However, periodic improvements to the oxygen supply of the area resulted in the formation of shell beds when brachiopods of the species Dalmanella sulcata were able to gain a foothold. During longer periods of nondeposition, more complex ecological communities could form, as evidenced by the presence of limestones that progress upwards from low-diversity, whole fossil packstones to high-diversity grainstones. [11]

Due to the region's topographical height compared to the surrounding landscape at the time, the Logana Member is absent around and southeast of Winchester since the area did not reach depths required for the shale's deposition. On the other hand, the member continuously thickens northward and westward as it approaches the deep waters of the former Sebree trough.

Grier Member

As sea levels began to fall, oxygen levels normalized throughout the platform, leading to a boom in biodiversity. Much of the Grier Member was deposited in waters with little wave action, so unabraded fossils of bryozoans and brachiopods are exceedingly abundant. Crinoids were also very common during the time of deposition, but few are preserved as complete fossils. The presence of gastropods with lime mud indicates that the environment was also highly rich in algae, while the lenticular and nodular structure of some beds point to an abundance of soft-bodied burrowing organisms which have not been fossilized. Rocks of the Grier Member also have an unusually high phosphate concentration - this was most likely due to the influx of nutrient-rich cold waters from the Sebree trough northwest, which was also a reason for the abundance of fauna throughout the member.

Tanglewood Member

The relative topographical uniformness of the region was disrupted after two linear horst-like blocks were uplifted around a central graben structure south of Versailles, Kentucky as a result of Taconic tectonism. Owing to their shallower depth compared to the surrounding landscape, tidal currents began to cause accretions of bioclastic debris to form on top of them, giving rise to two major shoal complexes. [9]

These sandbars are today preserved as the Tanglewood Member - a complex formation of well-sorted limestone that makes up the bulk of the Lexington Limestone in the inner Bluegrass region. Most of the debris that makes up the Tanglewood member represents the broken and abraded fragments of locally abundant calcified animals, mainly crinoids, brachiopods, bryozoans and ostracodes. [3] Fragments of the bryozoan Constellaria teres, which was very common throughout the Lexington platform in general during the time period, constitute a substantial portion of the bioclastic material. In particular, where the Tanglewood member grades into the overlying Devils Hollow member, relatively intact thickets of C. teres and other bryozoans occur, in the so-called Constellaria beds. [3] [12]

The area of deposition of the Tanglewood has undergone several changes since the initial deposition of the member. Over time, due to rising sea levels or subsidence, the southwestern block came under deeper waters, as evidenced by the expansion of the shaley Brannon Member into the area. Later, an apparent reversal in the polarity of tectonic subduction at the Laurentia-Taconic boundary caused the entire horst-graben structure to invert - the formerly deep graben between the two Tanglewood horsts was raised, while the two horsts subsided, causing the area of deposition of the Tanglewood member to shift to the area previously associated with the Brannon member. [9] This situation persisted until the end of Lexington time, when carbonate deposition in the area ended.

Brannon Member

Between the two Tanglewood horsts, an area of deeper water served as the environment of deposition for the Brannon Member. The unit is thickest in this area, reaching a thickness of about 6–8 meters, indicating that environmental conditions favorable to its deposition were present here for the longest amount of time. However, the Brannon Member was not limited purely to this graben structure - it gradually pinches out northeastward as well, and overlies the southwestern Tanglewood area, apparently as a result of its horst subsiding.

It lies atop a hardground that was rapidly flooded by waters coming from the western Sebree trough. The rocks themselves consist of calcareous shale interbedded with thin, micro-grained limestones representing storm deposits. Since the unit was deposited in between two active faults, earthquakes would occasionally cause soft deformation to the rocks.

Perryville Limestone Member

While most of the central and northern part of the inner Bluegrass region was dominated by usually turbulent, nutrient-rich waters and a relief dotted with shoals, the southwest was shallower, calmer and had a poorer supply of nutrients due to being cut off from the more agitated northern waters by the aforementioned chain of Tanglewood member calcarenite bars. Unlike the Grier member, the Perryville member lacks authigenic phosphate, as the area's supply of nutrients was cut off. Although the steadily rising salinity and lack of nutrients were unfavorable to many members of the local biota, molluscs and algae were abundant. Fossils of the enigmatic Tetradium, now believed to be a type of red algae, are common throughout the facies, and the algae Girvanella coats many of the fossils.

When the block underlying the southwest Tanglewood shoal zone sank, so too did the lagoons of the Perryvile Member. The formerly shallow, restricted waters gradually deepened and circulation improved, as evidenced by the Grier-like Cornishville bed, the topmost subunit of the member.

Sulphur Well Member

Once sea levels fell again, environmental conditions in the southwest became similar to those of the Grier Limestone and resulted in the deposition of the Sulphur Well Member. A notable characteristic that sets it apart from the Grier Limestone is the abundance of bryozoans, in particular the species Heterotrypa foliacea, which dominate the fossil content. [12]

Devils Hollow Member

Following the aforementioned inversion of the horst-graben structure, the central graben was uplifted close to sea level. Once near the surface, a series of beaches began developing atop the block, which are today preserved as the Devils Hollow Member. [9]

It consists of two distinct types of rock - gastropod coquinites and calcilulite-calcisiltite rock. The coquinites represent the beach deposits themselves, while the calcilulite-calcisiltite rock represents lagoons that developed in shallow depressions in the beach landscape, likely no deeper than a few meters. [3]

Stamping Ground Member

A stratigraphic unit both underlain and overlain by the Tanglewood Member, the Stamping Ground Member is similar to the Millersburg unit, but is unconnected to it and stratigraphically lower. [3] Deposited in relatively shallow waters, it is rich in stromatoporoids, particularly Labechia huronensis. Red algae and brachiopods are also present. [13]

Millersburg Member

In the areas surrounding the Tanglewood shoals, conditions remained optimal for the existence of a relatively rich ecosystem. The Millersburg Member was deposited in these areas. In terms of fossil content, it is similar to the stratigraphically lower Grier Member, but is lithologically distinct due to having a much higher shale content. Shale is abundant due to a general increase in terrigenous sediment influx towards the end of Lexington time, rather than depth like in the Logana and Brannon members.

Strodes Creek Member

This member is rather bouldery, owing to its pinch-and-swell bedding, ball-and-pillow structure, and abundant stromatoporoids. Fossils of other fauna are also present, but only sporadically and in lesser numbers. [14]

Related Research Articles

The Ordovician is a geologic period and system, the second of six periods of the Paleozoic Era. The Ordovician spans 41.6 million years from the end of the Cambrian Period 485.4 million years ago (Mya) to the start of the Silurian Period 443.8 Mya.

Geology of the Grand Teton area

The geology of the Grand Teton area consists of some of the oldest rocks and one of the youngest mountain ranges in North America. The Teton Range, partly located in Grand Teton National Park, started to grow some 9 million years ago. An older feature, Jackson Hole, is a basin that sits aside the range.

Geology of the Australian Capital Territory Overview of the geology of the Australian Capital Territory

The geology of the Australian Capital Territory includes rocks dating from the Ordovician around 480 million years ago, whilst most rocks are from the Silurian. During the Ordovician period the region—along with most of eastern Australia—was part of the ocean floor. The area contains the Pittman Formation consisting largely of Quartz-rich sandstone, siltstone and shale; the Adaminaby Beds and the Acton Shale.

The geology of Illinois includes extensive deposits of marine sedimentary rocks from the Palaeozoic, as well as relatively minor contributions from the Mesozoic and Cenozoic. Ice age glaciation left a wealth of glacial topographic features throughout the state.

Decorah Shale

The Decorah Shale is a fossiliferous shale that makes up the lowermost formation in the Galena Group. The Decorah lies above the Platteville Limestone and below the Cummingsville Formation in the sedimentary sequence that formed from the shallow sea that covered central North America during Ordovician Time. The Decorah consists of three members : Spechts Ferry, Guttenberg, and Ion. The Spechts Ferry member is organic-rich and suggests a large influx of terrigenous sediment during deposition. The Guttenberg is characterized by nodular calcareous beds and contains several K-bentonite deposits. The Ion Member, present in the southern Decorah in Iowa, is characterized by alternating beds of shale and limestone.

Cincinnati Arch

The Cincinnati Arch is a broad structural uplift between the Illinois Basin to the west, the Michigan Basin to the northwest and the Appalachian Basin and Black Warrior Basin to the east and southeast. It existed as a positive topographic area during Late Ordovician through the Devonian Period which stretched from northern Alabama northeastward to the southeastern tip of Ontario. Fossils from the Ordovician Period are commonplace in the geologic formations which make up the Cincinnati Arch, and are commonly studied along man made roadcuts. The Nashville Dome of Tennessee and the Jessamine Dome or Lexington Dome of central Kentucky make up the central portion of the Arch. In the northern part, north of Cincinnati, Ohio, the Cincinnati Arch branches to form the Findlay and Kankakee arches. The Findlay plunges under Ontario and reappears as the Algonquin Arch further north.

Kope Formation

The Kope Formation is one of the three component bedrock formations of the Maquoketa Group that primarily consists of shale (75%) with some limestone (25%) interbedded. In general, it has a bluish-gray color that weathers light gray to yellowish-gray and it occurs in northern Kentucky, southwest Ohio, and southeast Indiana, United States.

Queenston Formation

The Queenston Formation is a geological formation of Upper Ordovician age, which outcrops in Ontario, Canada and New York, United States. A typical outcrop of the formation is exposed at Bronte Creek just south of the Queen Elizabeth Way. The formation is a part of the Queenston Delta clastic wedge, formed as an erosional response to the Taconic Orogeny. Lithologically, the formation is dominated by red and grey shales with thin siltstone, limestone and sandstone interlayers. As materials, comprising the clastic wedge, become coarser in close proximity to the Taconic source rocks, siltstone and sandstone layers are predominant in New York.

Paleontology in Kentucky

Paleontology in Kentucky refers to paleontological research occurring within or conducted by people from the U.S. state of Kentucky.

Paleontology in Tennessee

Paleontology in Tennessee refers to paleontological research occurring within or conducted by people from the U.S. state of Tennessee. During the early part of the Paleozoic era, Tennessee was covered by a warm, shallow sea. This sea was home to brachiopods, bryozoans, cephalopods, corals, and trilobites. Tennessee is one of the best sources of Early Devonian fossils in North America. During the mid-to-late Carboniferous, the state became a swampy environment, home to a rich variety of plants including ferns and scale trees. A gap in the local rock record spans from the Permian through the Jurassic. During the Cretaceous, the western part of the state was submerged by seawater. The local waters were home to more fossil gastropods than are known from anywhere else in the world. Mosasaurs and sea turtles also inhabited these waters. On land the state was home to dinosaurs. Western Tennessee was still under the sea during the early part of the Cenozoic. Terrestrial portions of the state were swampy. Climate cooled until the Ice Age, when the state was home to Camelops, horses, mammoths, mastodons, and giant ground sloths. The local Yuchi people told myths of giant lizard monsters that may have been inspired by fossils either local or encountered elsewhere. In 1920, after local fossils became a subject of formal scientific study, a significant discovery of a variety of Pleistocene creatures was made near Nashville. The Cretaceous bivalve Pterotrigonia thoracica is the Tennessee state fossil.

The Sinnipee Group is a geological group in Wisconsin. It consists primarily of sedimentary carbonate rocks. Primarily made of dolomite, it also has limestone as a secondary component and can even have shale imbedded with it. It was formed in the Ordovician period and has three rock members: Galena, Decorah, and Platteville formations.

Geological history of the Precordillera terrane

The Precordillera terrane of western Argentina is a large mountain range located southeast of the main Andes mountain range. The evolution of the Precordillera is noted for its unique formation history compared to the region nearby. The Cambrian-Ordovian sedimentology in the Precordillera terrane has its source neither from old Andes nor nearby country rock, but shares similar characteristics with the Grenville orogeny of eastern North America. This indicates a rift-drift history of the Precordillera in the early Paleozoic. The Precordillera is a moving micro-continent which started from the southeast part of the ancient continent Laurentia. The separation of the Precordillera started around the early Cambrian. The mass collided with Gondwana around Late Ordovician period. Different models and thinking of rift-drift process and the time of occurrence have been proposed. This page focuses on the evidence of drifting found in the stratigraphical record of the Precordillera, as well as exhibiting models of how the Precordillera drifted to Gondwana.

The geology of Morocco formed beginning up to two billion years ago, in the Paleoproterozoic and potentially even earlier. It was affected by the Pan-African orogeny, although the later Hercynian orogeny produced fewer changes and left the Maseta Domain, a large area of remnant Paleozoic massifs. During the Paleozoic, extensive sedimentary deposits preserved marine fossils. Throughout the Mesozoic, the rifting apart of Pangaea to form the Atlantic Ocean created basins and fault blocks, which were blanketed in terrestrial and marine sediments—particularly as a major marine transgression flooded much of the region. In the Cenozoic, a microcontinent covered in sedimentary rocks from the Triassic and Cretaceous collided with northern Morocco, forming the Rif region. Morocco has extensive phosphate and salt reserves, as well as resources such as lead, zinc, copper and silver.

The geology of Kentucky formed beginning more than one billion years ago, in the Proterozoic eon of the Precambrian. The oldest igneous and metamorphic crystalline basement rock is part of the Grenville Province, a small continent that collided with the early North American continent. The beginning of the Paleozoic is poorly attested and the oldest rocks in Kentucky, outcropping at the surface, are from the Ordovician. Throughout the Paleozoic, shallow seas covered the area, depositing marine sedimentary rocks such as limestone, dolomite and shale, as well as large numbers of fossils. By the Mississippian and the Pennsylvanian, massive coal swamps formed and generated the two large coal fields and the oil and gas which have played an important role in the state's economy. With interludes of terrestrial conditions, shallow marine conditions persisted throughout the Mesozoic and well into the Cenozoic. Unlike neighboring states, Kentucky was not significantly impacted by the Pleistocene glaciations. The state has extensive natural resources, including coal, oil and gas, sand, clay, fluorspar, limestone, dolomite and gravel. Kentucky is unique as the first state to be fully geologically mapped.

The geology of Utah includes rocks formed at the edge of the proto-North American continent during the Precambrian. A shallow marine sedimentary environment covered the region for much of the Paleozoic and Mesozoic, followed by dryland conditions, volcanism and the formation of the basin and range terrain in the Cenozoic. Utah is a state in the western United States.

The geology of Thailand includes deep crystalline metamorphic basement rocks, overlain by extensive sandstone, limestone, turbidites and some volcanic rocks. The region experienced complicated tectonics during the Paleozoic, long-running shallow water conditions and then renewed uplift and erosion in the past several million years ago.

Geology of Bulgaria

The geology of Bulgaria consists of two major structural features. The Rhodope Massif in southern Bulgaria is made up of Archean, Proterozoic and Cambrian rocks and is a sub-province of the Thracian-Anatolian polymetallic province. It has dropped down, faulted basins filled with Cenozoic sediments and volcanic rocks. The Moesian Platform to the north extends into Romania and has Paleozoic rocks covered by rocks from the Mesozoic, typically buried by thick Danube River valley Quaternary sediments. In places, the Moesian Platform has small oil and gas fields. Bulgaria is a country in southeastern Europe. It is bordered by Romania to the north, Serbia and North Macedonia to the west, Greece and Turkey to the south, and the Black Sea to the east.

The geology of Denmark includes 12 kilometers of unmetamorphosed sediments lie atop the Precambrian Fennoscandian Shield, the Norwegian-Scottish Caledonides and buried North German-Polish Caledonides. The stable Fennoscandian Shield formed from 1.45 billion years ago to 850 million years ago in the Proterozoic. The Fennoscandian Border Zone is a large fault, bounding the deep basement rock of the Danish Basin—a trough between the Border Zone and the Ringkobing-Fyn High. The Sorgenfrei-Tornquist Zone is a fault-bounded area displaying Cretaceous-Cenozoic inversion.

The Moscow Basin is a major sedimentary basin and tectonic structural feature in the stable East European Craton. It has been widely studied by Russian and Scandinavian geologists.

Maysville roadcut

The Maysville roadcut, located in northeastern Kentucky, features Upper Ordovician rock and fossils. Maysville is located in Mason County, Kentucky and contains a large roadcut along the U.S. Route 68 highway. The Maysville roadcut lies on the Clyde T. Barbour Parkway. The roadcut was human-made in the 1950s and consists of rock from the Ordovician period that is roughly 450 million years old. Maysville provides an opportunity to observe the stratigraphy of the formations present of the Ordovician time period.

References

  1. Tucker, R. D. (1992). "U-Pb dating of Plinian-eruption ashfalls by the isotope dilution method: A reliable and precise tool for time-scale calibration and biostratigraphic correlation". Geological Society of America. 24 (7). OSTI   5589081.
  2. 1 2 3 Schrantz, Rick (2001). "The Lexington Limestone". University of Kentucky. Retrieved 23 December 2016.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 Cressman, E. R. (1973). "Lithostratigraphy and Depositional Environments of the Lexington Limestone (Ordovician) of Central Kentucky" (PDF). U.S. Geological Survey Publications. Retrieved 23 December 2016.
  4. 1 2 "The Lexington Limestone(Middle Ordovician) of Central Kentucky" (PDF).
  5. "Bluegrass Region". University of Kentucky. 2016. Retrieved 2 July 2017.
  6. "The Ordovician of Kentucky". U.S. Geological Survey. 2001. Retrieved 2 July 2017.
  7. "Ordovician Period". University of Kentucky. 2012. Retrieved 23 December 2016.
  8. Brett C, McLaughlin P, Cornell S, Baird G (2004). "Comparative sequence stratigraphy of two classic Upper Ordovician successions, Trenton Shelf (New York–Ontario) and Lexington Platform (Kentucky–Ohio): implications for eustasy and local tectonism in eastern Laurentia". Palaeo. 210 (2–4): 299–300. doi:10.1016/j.palaeo.2004.02.038.
  9. 1 2 3 4 Ettensohn, Frank R. (2004). "Structural inversion and origin of a Late Ordovician (Trenton) carbonate buildup: evidence from the Tanglewood and Devils Hollow members, Lexington Limestone, central Kentucky (USA)". Palaeogeography, Palaeoclimatology, Palaeoecology. 210 (2–4): 249–266. Bibcode:2004PPP...210..249E. doi:10.1016/j.palaeo.2004.02.040 . Retrieved 10 July 2017.
  10. Kolata, D. R.; Huff, W. D.; Bergstrom, S. M. (2001). "The Ordovician Sebree Trough: An oceanic passage to the Midcontinent United States". Geological Society of America Bulletin. 113 (8): 1067–1078. Bibcode:2001GSAB..113.1067K. doi:10.1130/0016-7606(2001)113<1067:TOSTAO>2.0.CO;2. ISSN   0016-7606.
  11. Dattilo, Benjamin F.; Lambert, Collin; Young, Allison L.; Brett, Carlton E. (2015). "Origin and Importance of Shell Beds in the Logana Member of the Lexington Limestone, (Katian, Ordovician) on the South Flank of the Seebree Through, Cincinnati, Ohio".{{cite journal}}: Cite journal requires |journal= (help)
  12. 1 2 Karklins, Olgerts L. (1984). "Trepostome and Cystoporate Bryozoans from the Lexington Limestone and the Clays Ferry Formation(Middle and Upper Ordovician) of Kentucky" (PDF). U.S. Geological Survey Publications. Retrieved 2 July 2017.
  13. "EPIBOLE OF THE STROMATOPOROID LABECHIA HURONENSIS FROM THE UPPER LEXINGTON LIMESTONE (SHERMANIAN), NORTHERN KENTUCKY". Geological Society of America. Retrieved 2018-12-29.
  14. "Strodes Creek Member(Upper Ordovician)-- A New Map Unit in the Lexington Limestone of North-Central Kentucky" (PDF).