List of landing ellipses on extraterrestrial bodies

Last updated

Comparison of landing ellipses of NASA Mars landers in 1997, 2008, 2012, and 2021, respectively. ImprovingMartianEllipses.png
Comparison of landing ellipses of NASA Mars landers in 1997, 2008, 2012, and 2021, respectively.
Shaded ellipses of Skylab's reentry on 1979-07-11. Included for purposes of comparison. Skylab reentry map.svg
Shaded ellipses of Skylab's reentry on 1979-07-11. Included for purposes of comparison.
Deorbit of Mir, 23 March 2001. The debris field (in red) is +-1,500 x +-100 km, smaller than predicted due atmospheric reentry being slightly steeper than anticipated Mir reentry map.svg
Deorbit of Mir, 23 March 2001. The debris field (in red) is ±1,500 x ±100 km, smaller than predicted due atmospheric reentry being slightly steeper than anticipated
The 150 x 20 km landing footprint of Opportunity rover on Meridiani Planum, Mars in 2004 Opportunity rover's landing site.jpg
The 150 x 20 km landing footprint of Opportunity rover on Meridiani Planum, Mars in 2004
Suggested landing ellipses for Luna-25. Primary ellipses are 1, 4, 6 and secondary ellipses are 2, 3, 5, 7, 8, 9, 10, 11 and B1, B2. Suggested landing ellipses for Luna-Glob.png
Suggested landing ellipses for Luna-25. Primary ellipses are 1, 4, 6 and secondary ellipses are 2, 3, 5, 7, 8, 9, 10, 11 and B1, B2.

This is a list of the projected landing zones on extraterrestrial bodies. The size of the ellipse or oval graphically represents statistical degrees of uncertainty, i.e. the confidence level of the landing point, with the center of the ellipse being calculated as the most likely given the plethora of variables. [3] Their accuracy has improved from the early attempts in the 1960s; active research continues in the 21st century. [4] [5] [6] [7]

Contents

Ellipse table

MissionCountry/AgencyDestinationDate of Impact/LandingAxesNotes
Surveyor 1 Flag of the United States.svg NASAMoon196650 km [8] Landing error ~18.96 km [9]
Surveyor 3 Flag of the United States.svg NASAMoon196715.1 x 10.6 km [8] Initial landing ellipse was 30 km, was corrected in-flight after midcourse correction. [8] Landing error ~2.76 km [9]
Apollo 11 Flag of the United States.svg NASAMoon196918.5 x 4.8 km [10] [11] First crewed landing. Landing error ~6.6 km [9]
Apollo 12 Flag of the United States.svg NASAMoon1969~1 km, [12] or 13.3 x 4.8 km [a] [13] Second crewed landing. Landing error ~160 m [9] Landed in ~200 m from Surveyor 3, its target. Landing was very precise and not intended to be closer. [12]
Apollo 14 Flag of the United States.svg NASAMoon1971~1 km [12]
Apollo 15 Flag of the United States.svg NASAMoon1971~1 km [12]
Apollo 16 Flag of the United States.svg NASAMoon1972~1 km [12]
Apollo 17 Flag of the United States.svg NASAMoon1972~1 km, [12] or 15 x 5 km [14] Last crewed landing. Landing error ~400 m [9]
Viking Flag of the United States.svg NASAMars1976280 x 100 km [15] Retrorocket
n/a Shoemaker-Levy 9 (comet)Jupiter1994-07-16n/aAs per IAUC in 1993 May 22; 0.0003 AU (45,000 km) from the center of Jupiter, i.e. within the planet's radius of 0.0005 AU (69,911 km) on 1994 July 25.4. (sic) [16] Actual train of impacts as finally projected occurred beyond Jupiter's limb. [17] Included for purposes of comparison.
Mars Pathfinder Flag of the United States.svg NASAMars1997200 x 70 km [18] or 200 x 100 km [19] [20] Airbags
Mars Polar Lander Flag of the United States.svg NASAMars1999200 x 20 km [21] Communications failed before landing attempt.
Mars Exploration Rovers Flag of the United States.svg NASAMars2003150 x 20 km [22] Airbags
Beagle 2 Flag of Europe.svg ESAMars2003174 x 106 km [23] Successful landing, communications failure.
Huygens Flag of Europe.svg ESATitan20051200 x 200 km [24] [25]
Phoenix Flag of the United States.svg NASAMars2008100 x 19 km [3] or "70 km long" [26]
Mars Science Laboratory Flag of the United States.svg NASAMars201225 x 20 km [18] Sky crane
Chang'e 3 Flag of the People's Republic of China.svg CNSAMoon20136 x 6 km [9] Landed with a landing error of ~89 m, [9] 2 m targeting precision [12]
Philae Flag of Europe.svg ESA 67P/Churyumov–Gerasimenko 20140.5 km [27]
Falcon 9 first-stage booster Flag of the United States.svg SpaceXEarth2015~20 m [28] [29] First reusable rocket, and the most precise landing system to date. Included for comparison.
Schiaparelli EDM Flag of Europe.svg ESAMars2016100 x 15 km [30] [31] Crash landing.
Cassini Flag of the United States.svg NASASaturn2017-09-17TBDRotation brought entry area into view.
InSight Flag of the United States.svg NASAMars2018130 x 27 km [18]
Hayabusa2 Flag of Japan.svg JAXA 162173 Ryugu 20182 or 3 m [12] Sampling occurred in ~1 m from a target. [12]
OSIRIS-REx Flag of the United States.svg NASA 101955 Bennu 20206.5 m [12] Sampling occurred in ~1 m from a target. [12]
Mars 2020 Flag of the United States.svg NASAMars20217.7 x 6.6 km [32] Sky crane. Landed 1.7 km from center of ellipse. [33]
Tianwen-1 Flag of the People's Republic of China.svg CNSAMars202156 x 22 km [12] [34]
ExoMars 2020 Flag of Europe.svg Flag of Russia.svg ESA/RoscosmosMars2023104 x 19 km [35] [36] [37] or 120 x 19 km [38] Mission postponed until 2028.
Luna 25 Flag of Russia.svg RoscosmosMoon2023-08-1930 x 15 km [2] [39] [40] Mission failed before landing attempt.
Chandrayaan-3 Flag of India.svg ISROMoon2023-08-234.5 x 2.5 km [41] or 4 x 2.4 km [42]
OSIRIS-REx return capsule Flag of the United States.svg NASAEarth2023-09-2430 x 80 km, [43] 14 x 58 km, [44] or 12 x 30 km [45] Sample return from an asteroid. Capsule landed ~ 8 km from the center. [45]
Peregrine Mission One Flag of the United States.svg Astrobotic, Inc. Moon2024-01-1824 x 6 km [42] [46] First U.S. lunar lander built since Apollo Program (1972). Aborted to Point Nemo.
SLIM Flag of Japan.svg JAXAMoon2024-01-19100 m [47] [42] Dubbed "Moon Sniper" for its accuracy (despite having landed upside-down). [48] Landed ~55 m from target point. [49]
IM-1 Nova-C Odysseus Flag of the United States.svg Intuitive Machines Moon2024-02-22Landed ~1.5 km from the target. [50]
Blue Ghost Mission 1 Flag of the United States.svg Firefly Aerospace Moon2025-03-02100 m [51] Landed within the ellipse.
Cassini retirement, Saturn, 9.4degN 15 W, 15 September 2017, at the southern edge of the North Equatorial Belt (itself approximately 15,000 km wide); the blander Equatorial Zone is immediately below. PIA21896-Saturn-Cassini-ImpactSite-20170915.jpg
Cassini retirement, Saturn, 9.4°N 15 W, 15 September 2017, at the southern edge of the North Equatorial Belt (itself approximately 15,000 km wide); the blander Equatorial Zone is immediately below.

See also

Notes

  1. 7.2 nautical miles (13.3 km) x 2.6 nautical miles (4.8 km) per source

References

  1. "Landing Ellipse for the Opportunity Rover Mars mission | Time and Navigation". timeandnavigation.si.edu.
  2. 1 2 Krasilnikov, S. S.; Basilevsky, A. T.; Ivanov, M. A.; Krasilnikov, A. S. (1 March 2021). "Geological and Geomorphological Characteristics of High-Priority Landing Sites for the Luna-Glob Mission". Solar System Research. 55 (2): 83–96. Bibcode:2021SoSyR..55...83K. doi: 10.1134/S0038094621010056 . ISSN   1608-3423.
  3. 1 2 "Landing ellipses". The Planetary Society.
  4. Zhang, Yuan-Long; Chen, Ke-Jun; Liu, Lu-Hua; Tang, Guo-Jian; Bao, Wei-Min (August 22, 2017). "Rapid generation of landing footprint based on geometry-predicted trajectory" . Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. 231 (10): 1851–1861. doi:10.1177/0954410016662066. S2CID   114089246 via CrossRef.
  5. "Zeroing in on the Target". NASA Mars Exploration. 5 January 2021.
  6. Saraf, Amitabh; Leavitt, James; Ferch, Mark; Mease, Kenneth (August 16, 2004). "Landing Footprint Computation for Entry Vehicles". AIAA Guidance, Navigation, and Control Conference and Exhibit. American Institute of Aeronautics and Astronautics. doi:10.2514/6.2004-4774. ISBN   978-1-62410-073-4 via CrossRef.
  7. Zhang, Yuan-long; Xie, Yu; Xu, Xin (February 1, 2023). "Generation of Landing Footprints for Re-entry Vehicles Based on Lateral Profile Priority" . International Journal of Aeronautical and Space Sciences. 24 (1): 261–273. Bibcode:2023IJASS..24..261Z. doi:10.1007/s42405-022-00503-1. S2CID   251945950 via Springer Link.
  8. 1 2 3 "Surveyor III Mission Report" (PDF).
  9. 1 2 3 4 5 6 7 Li, Shuang; Jiang, Xiuqiang; Tao, Ting (2016). "Guidance Summary and Assessment of the Chang'e-3 Powered Descent and Landing". Journal of Spacecraft and Rockets. 53 (2): 258–277. Bibcode:2016JSpRo..53..258L. doi:10.2514/1.A33208.
  10. Eppler, Dean (2019). "Human Lunar Landing Experience On Project Apollo" (PDF).
  11. Chaikin, Andrew (2007). A Man on the Moon: The Triumphant Story Of The Apollo Space Program. New York: Penguin Group. p. 88. ISBN   978-0-14-311235-8.
  12. 1 2 3 4 5 6 7 8 9 10 11 12 Lorenz, Ralph D. (1 January 2023). "Planetary landings with terrain sensing and hazard avoidance: A review". Advances in Space Research. 71 (1): 1–15. Bibcode:2023AdSpR..71....1L. doi: 10.1016/j.asr.2022.11.024 . ISSN   0273-1177.
  13. "Apollo 12 Image Library". www.nasa.gov.
  14. "The Mystery of Lunar Water Part 2 Instructor Guide" (PDF).
  15. "NASA technology enables precision landing without a pilot". phys.org.
  16. "IAUC 5800: 1993e". www.cbat.eps.harvard.edu.
  17. Watanabe, J.; Rogers, J. (July 1, 1994). "Periodic Comet Shoemaker-Levy 9 (1993e)". International Astronomical Union Circular (6025): 1. Bibcode:1994IAUC.6025....1W via NASA ADS.
  18. 1 2 3 "Zeroing in on the Target". NASA Mars Exploration. 5 January 2021. Retrieved 22 January 2024.
  19. "MPF Landing Footprint Plots". mars.nasa.gov. 20 December 2017.
  20. "Mars Pathfinder Landing Ellipses". NASA Jet Propulsion Laboratory (JPL).
  21. "Mars Polar Lander and Deep Space 2 Landing Sites". nssdc.gsfc.nasa.gov.
  22. "Image Gallery: Perseverance Rover - NASA". mars.nasa.gov. Retrieved 22 January 2024.
  23. Bridges, J. C.; Seabrook, A. M.; Rothery, D. A.; Kim, J. R.; Pillinger, C. T.; Sims, M. R.; Golombek, M. P.; Duxbury, T.; Head, J. W.; Haldemann, A. F. C.; Mitchell, K. L.; Muller, J.-P.; Lewis, S. R.; Moncrieff, C.; Wright, I. P.; Grady, M. M.; Morley, J. G. (2003). "Selection of the landing site in Isidis Planitia of Mars probe Beagle 2" . Journal of Geophysical Research: Planets. 108 (E1): 5001. Bibcode:2003JGRE..108.5001B. doi:10.1029/2001JE001820.
  24. Lebreton, J. -P.; Matson, D. L. (1997). "1997ESASP1177....5L Page 5". Huygens: Science. 1177: 5. Bibcode:1997ESASP1177....5L.
  25. Lebreton, Jean-Pierre; Witasse, Olivier; Sollazzo, Claudio; Blancquaert, Thierry; Couzin, Patrice; Schipper, Anne-Marie; Jones, Jeremy B.; Matson, Dennis L.; Gurvits, Leonid I.; Atkinson, David H.; Kazeminejad, Bobby; Pérez-Ayúcar, Miguel (December 23, 2005). "An overview of the descent and landing of the Huygens probe on Titan" . Nature. 438 (7069): 758–764. Bibcode:2005Natur.438..758L. doi:10.1038/nature04347. PMID   16319826. S2CID   4355742 via www.nature.com.
  26. "Zeroing in on Mars". Jet Propulsion Laboratory .
  27. Agle, D. C.; Laboratory, Jet Propulsion (October 16, 2014). "A Close Up View of the Primary Landing Site on Comet 67P".
  28. "SpaceX's self-landing rocket is a flying robot that's great at math". Quartz. 21 February 2017. Retrieved 23 January 2024.
  29. Blackmore, Lars (Winter 2016). "Autonomous Precision Landing of Space Rockets" (PDF). The Bridge, National Academy of Engineering. 46 (4): 15–20. ISSN   0737-6278. Archived (PDF) from the original on January 10, 2017. Retrieved January 15, 2017.
  30. Gibney, Elizabeth (October 17, 2016). "Europe and Russia prepare for historic landing on Mars" . Nature. doi:10.1038/nature.2016.20812. S2CID   133443172 via www.nature.com.
  31. "Spotlight on Schiaparelli's landing site". www.esa.int.
  32. "Perseverance Rover Landing Ellipse in Jezero Crater". NASA Mars Exploration. 5 January 2021. Retrieved 22 January 2024.
  33. Foust, Jeff (February 18, 2021). "Perseverance lands on Mars".
  34. Wu, Bo; Dong, Jie; Wang, Yiran; Rao, Wei; Sun, Zezhou; Li, Zhaojin; Tan, Zhiyun; Chen, Zeyu; Wang, Chuang; Liu, Wai Chung; Chen, Long; Zhu, Jiaming; Li, Hongliang (2022). "Landing Site Selection and Characterization of Tianwen-1 (Zhurong Rover) on Mars". Journal of Geophysical Research: Planets. 127 (4). Bibcode:2022JGRE..12707137W. doi: 10.1029/2021je007137 .
  35. "ESA - Robotic Exploration of Mars - Choosing the ExoMars 2020 landing site". exploration.esa.int. Retrieved 24 January 2024.
  36. "ExoMars 2020 Landing Map". The Planetary Society. Retrieved 24 January 2024.
  37. Favaro, E. A.; Balme, M. R.; Davis, J. M.; Grindrod, P. M.; Fawdon, P.; Barrett, A. M.; Lewis, S. R. (April 2021). "The Aeolian Environment of the Landing Site for the ExoMars Rosalind Franklin Rover in Oxia Planum, Mars". Journal of Geophysical Research: Planets. 126 (4). Bibcode:2021JGRE..126.6723F. doi: 10.1029/2020JE006723 . ISSN   2169-9097 . Retrieved 24 January 2024.
  38. "ExoMars landing site revealed | News". University of Leicester. 22 November 2018. Retrieved 24 January 2024.
  39. Ivanov, M.A.; Abdrakhimov, A.M.; Basilevsky, A.T.; Demidov, N.E.; Guseva, E.N.; Head, J.W.; Hiesinger, H.; Kohanov, A.A.; Krasilnikov, S.S. (November 2018). "Geological characterization of the three high-priority landing sites for the Luna-Glob mission". Planetary and Space Science. 162: 190–206. Bibcode:2018P&SS..162..190I. doi:10.1016/j.pss.2017.08.004.
  40. Ivanov, M.A.; Hiesinger, H.; Abdrakhimov, A.M.; Basilevsky, A.T.; Head, J.W.; Pasckert, J-H.; Bauch, K.; van der Bogert, C.H.; Gläser, P.; Kohanov, A. (November 2015). "Landing site selection for Luna-Glob mission in crater Boguslawsky". Planetary and Space Science. 117: 45–63. Bibcode:2015P&SS..117...45I. doi:10.1016/j.pss.2015.05.007.
  41. "India's Chandrayaan-3 Will Attempt Soft Lunar Landing | Aviation Week Network". aviationweek.com.
  42. 1 2 3 "小型月着陸実証機「SLIM」月着陸へ向けた今後の予定" [Small lunar landing demonstration vehicle "SLIM" Future plans for the moon landing](PDF). JAXA.
  43. "OSIRIS-REx Mission Profile – OSIRIS-REx | Spaceflight101" . Retrieved 24 January 2024.
  44. Warren, Haygen (24 September 2023). "Historic OSIRIS-REx asteroid samples successfully return to Earth". NASASpaceFlight.com. Retrieved 24 January 2024.
  45. 1 2 Foust, Jeff (24 September 2023). "OSIRIS-REx sample capsule lands in Utah". SpaceNews. Retrieved 24 January 2024.
  46. Wattles, Jackie (January 19, 2024). "Astrobotic's Peregrine lunar lander burns up over Pacific Ocean". CNN.
  47. "SLIMの月面ピンポイント着陸技術". 宇宙科学研究所.
  48. McCurry, Justin (26 January 2024). "Japan's 'moon sniper' probe made incredibly accurate landing, but is now upside down". The Guardian. Retrieved 29 February 2024.
  49. "Japan releases image of SLIM spacecraft upside down on moon". Nikkei Asia. Retrieved 7 February 2024.
  50. Foust, Jeff (26 February 2024). "Intuitive Machines expects early end to IM-1 lunar lander mission". SpaceNews. Retrieved 29 February 2024.
  51. Banks, E.; Grimm, R. E.; Stillman, D. E.; Watkins, R. N.; Ghent, R. R. (2022). LANDING SITE SELECTED FOR THE BLUE GHOST MISSION TO MARE CRISIUM (PDF). 53rd Lunar and Planetary Science Conference.