This is a list of paleocontinents, significant landmasses that have been proposed to exist in the geological past. The degree of certainty to which the identified landmasses can be regarded as independent entities reduces as geologists look further back in time. The list includes cratons, supercratons, microcontinents, continents and supercontinents. For the Archean to Paleoproterozoic cores of most of the continents see also list of shields and cratons.
Name | Age (Ma) | Period/Era Range | Type | Comments | Sources |
---|---|---|---|---|---|
Amazonia | Craton | [1] [2] [3] | |||
Arabia–Nubia | 610 | Neoproterozoic | Microcontinent | Rifted off Rodinia at about 840 Ma. Then accreted to North Africa with large volume of juvenile crust during the Pan-African orogeny to form the Arabian-Nubian Shield. | [4] [5] |
Arctica | 2565 | Neoarchean | Supercraton | [6] | |
Argoland | 155 | an archipelago of microcontinents | Rifted off Australia 155 Ma ago after splitting into microcontinents about 215Ma ago | [7] [8] | |
Atlantica | 1500 | Mesoproterozoic | Continent | Formed from a series of cratons during the development of Columbia - independent from about 1500 Ma, following break-up of Columbia - part of Rodinia from 1000 Ma | [2] |
Avalonia | Cambrian | Continent | Rifted off northern Gondwana in the Cambrian, eventually colliding with Laurentia and Baltica in the Caledonian Orogeny to form Laurussia. | [9] | |
Baltica | 2000 | Paleoproterozoic | Continent | Formed from three cratonic fragments - the Baltic Shield, Sarmatia and Volgo–Uralia. Formed part of Columbia, then Rodinia and Pannotia. Collided with Laurentia and Avalonia to form Laurussia. | [1] [4] [2] [10] |
Cathaysia | 1800 | Continent | Fused with the Yangtze block to form the South China Craton during the Early Paleozoic. | [11] | |
Cimmeria | 300 | Late Carboniferous–Early Permian | Continent | Rifted off margin of Gondwana, opening up Neotethys, collided with Laurasia about 150 Ma in the Cimmerian Orogeny. Regarded as being made up of many separate continental fragments. | [12] |
Columbia (Nuna) | 2100 | Paleoproterozoic | Supercontinent | Oldest widely accepted supercontinent. also known as Nuna. | [13] [3] |
East Antarctica | Craton | [14] | |||
East European | Craton | The cratonic core of Baltica or a synonym for the paleocontinent | [2] [10] | ||
Gondwana | 500 | Late Neoproterozoic | Continent | Also described as a supercontinent | [4] [15] |
India | Continent | [1] [4] | |||
Kalahari | Craton | [1] [4] | |||
Kazakhstania | Continent | [16] | |||
Kenorland | 2720 | Neoarchean | Supercontinent | Alternatively, landmasses may have grouped into two supercratons, Sclavia and Superia | [17] |
Laurasia | Carboniferous-Permian | Continent | Formed by the break-up of Pangaea after Kazakhstania and Siberia had joined with the former Laurussia | [15] | |
Laurentia | 1830 | Paleoarchean | Continent | [1] | |
Laurussia | 425 | Early Devonian | Continent | The "Old Red Continent" formed by the Caledonian Orogeny, joined with Gondwana to form Pangaea | [18] |
Mawson | 1730 | Paleoproterozoic | Continent | [3] | |
Nena | 1900 | Paleoproterozoic | Continent | [13] | |
North Australia | 2000 | Paleoproterozoic | Craton | [19] | |
North China | 2500 | Paleoproterozoic | Craton | [1] [4] | |
Pangaea | 350 | Late Permian | Supercontinent | [15] | |
Pannotia | 600 | Neoproterozoic | Supercontinent | [20] | |
Rodinia | 1000 | Mesoproterozoic | Supercontinent | [4] | |
São Francisco–Congo | 1800 | Proterozoic | Craton | [1] [13] | |
Sclavia | Paleoarchean | Supercraton | [17] | ||
Siberia | 2800 | Neoarchean | Continent | [1] [4] | |
Sahul | Paleoproterozoic | paleocontinent | mainland Australia, Tasmania, New Guinea, and Aru Islands. | [21] | |
South Australia | Craton | [19] | |||
South China | Neoproterozoic | Craton | [4] | ||
Superia | 2680 | Neoarchean | Supercraton | [17] | |
Tarim | Early Mesoproterozoic | Craton | [22] [4] | ||
Ur | 3100 | Mesoarchean | Continent | [23] | |
Vaalbara | 3300 | Late Neoarchean–Early Paleoproterozoic | Continent | [17] | |
West Africa | Paleoproterozoic | Craton | [2] [1] [3] | ||
West Australia | 2000 | Paleoprotereozoic | Craton | [19] | |
Yangtze | 1800 | Late Neoarchean–Early Paleoproterozoic | Craton | Fused with the Cathaysia block to form the South China Craton during the Early Paleozoic. | [11] |
The Precambrian is the earliest part of Earth's history, set before the current Phanerozoic Eon. The Precambrian is so named because it preceded the Cambrian, the first period of the Phanerozoic Eon, which is named after Cambria, the Latinized name for Wales, where rocks from this age were first studied. The Precambrian accounts for 88% of the Earth's geologic time.
In geology, a supercontinent is the assembly of most or all of Earth's continental blocks or cratons to form a single large landmass. However, some geologists use a different definition, "a grouping of formerly dispersed continents", which leaves room for interpretation and is easier to apply to Precambrian times. To separate supercontinents from other groupings, a limit has been proposed in which a continent must include at least about 75% of the continental crust then in existence in order to qualify as a supercontinent.
Rodinia was a Mesoproterozoic and Neoproterozoic supercontinent that assembled 1.26–0.90 billion years ago (Ga) and broke up 750–633 million years ago (Ma). Valentine & Moores 1970 were probably the first to recognise a Precambrian supercontinent, which they named "Pangaea I." It was renamed "Rodinia" by McMenamin & McMenamin 1990, who also were the first to produce a plate reconstruction and propose a temporal framework for the supercontinent.
The Mesoproterozoic Era is a geologic era that occurred from 1,600 to 1,000 million years ago. The Mesoproterozoic was the first era of Earth's history for which a fairly definitive geological record survives. Continents existed during the preceding era, but little is known about them. The continental masses of the Mesoproterozoic were more or less the same ones that exist today, although their arrangement on the Earth's surface was different.
Columbia, also known as Nuna or Hudsonland, is a hypothetical ancient supercontinent. It was first proposed by John J.W. Rogers and M. Santosh in 2002 and is thought to have existed approximately 2,500 to 1,500 million years ago (Ma), in the Paleoproterozoic era. The assembly of the supercontinent was likely completed during global-scale collisional events from 2,100 to 1,800 Ma.
Arctica, or Arctida is a hypothetical ancient continent which formed approximately 2.565 billion years ago in the Neoarchean era. It was made of Archaean cratons, including the Siberian Craton, with its Anabar/Aldan shields in Siberia, and the Slave, Wyoming, Superior, and North Atlantic cratons in North America. Arctica was named by Rogers 1996 because the Arctic Ocean formed by the separation of the North American and Siberian cratons. Russian geologists writing in English call the continent "Arctida" since it was given that name in 1987, alternatively the Hyperborean craton, in reference to the hyperboreans in Greek mythology.
Pannotia, also known as the Vendian supercontinent, Greater Gondwana, and the Pan-African supercontinent, was a relatively short-lived Neoproterozoic supercontinent that formed at the end of the Precambrian during the Pan-African orogeny, during the Cryogenian period and broke apart 560 Ma with the opening of the Iapetus Ocean, in the late Ediacaran and early Cambrian. Pannotia formed when Laurentia was located adjacent to the two major South American cratons, Amazonia and Río de la Plata. The opening of the Iapetus Ocean separated Laurentia from Baltica, Amazonia, and Río de la Plata. A 2022 paper argues that Pannotia never fully existed, reinterpreting the geochronological evidence: "the supposed landmass had begun to break up well before it was fully assembled". However, the assembly of the next supercontinent Pangaea is well established.
Baltica is a paleocontinent that formed in the Paleoproterozoic and now constitutes northwestern Eurasia, or Europe north of the Trans-European Suture Zone and west of the Ural Mountains. The thick core of Baltica, the East European Craton, is more than three billion years old and formed part of the Rodinia supercontinent at c. 1 Ga.
Atlantica is an ancient continent that formed during the Proterozoic about 2,000 million years ago from various 2 Ga cratons located in what are now West Africa and eastern South America. The name, introduced by John Rogers in 1996, was chosen because the parts of the ancient continent are now located on opposite sides of the South Atlantic Ocean.
The Congo Craton, covered by the Palaeozoic-to-recent Congo Basin, is an ancient Precambrian craton that with four others makes up the modern continent of Africa. These cratons were formed between about 3.6 and 2.0 billion years ago and have been tectonically stable since that time. All of these cratons are bounded by younger fold belts formed between 2.0 billion and 300 million years ago.
Vaalbara is a hypothetical Archean supercontinent consisting of the Kaapvaal Craton and the Pilbara Craton. E. S. Cheney derived the name from the last four letters of each craton's name. The two cratons consist of continental crust dating from 2.7 to 3.6 Ga, which would make Vaalbara one of Earth's earliest supercontinents.
The Kalahari Craton is a craton, an old and stable part of the continental lithosphere, that occupies large portions of South Africa, Botswana, Namibia and Zimbabwe. It consists of two cratons separated by the Limpopo Belt: the larger Kaapvaal Craton to the south and the smaller Zimbabwe Craton to the north. The Namaqua Belt is the southern margin of the Kaapvaal Craton.
The North China Craton is a continental crustal block with one of Earth's most complete and complex records of igneous, sedimentary and metamorphic processes. It is located in northeast China, Inner Mongolia, the Yellow Sea, and North Korea. The term craton designates this as a piece of continent that is stable, buoyant and rigid. Basic properties of the cratonic crust include being thick, relatively cold when compared to other regions, and low density. The North China Craton is an ancient craton, which experienced a long period of stability and fitted the definition of a craton well. However, the North China Craton later experienced destruction of some of its deeper parts (decratonization), which means that this piece of continent is no longer as stable.
The Rio de la Plata Craton (RPC) is a medium-sized continental block found in Uruguay, eastern Argentina and southern Brazil. During its complex and protracted history it interacted with a series other blocks and is therefore considered important for the understanding of the amalgamation of West Gondwana. Two orogenic cycles have been identified in the RPC: a 2000 Ma-old western domain representing the old craton and a 700–500 Ma-old eastern domain assigned to the Brasiliano Cycle. It is one of the five cratons of the South American continent. The other four cratons are: Amazonia, São Francisco, Río Apa and Arequipa–Antofalla.
Ur is a hypothetical supercontinent that formed in the Archean eon around 3.1 billion years ago (Ga). In a reconstruction by Rogers, Ur is half a billion years older than Arctica and, in the early period of its existence, probably the only continent on Earth, making it a supercontinent despite probably being smaller than present-day Australia. In more recent works geologists often refer to both Ur and other proposed Archaean continental assemblages as supercratons. Ur can, nevertheless, be half a billion years younger than Vaalbara, but the concepts of these two early cratonic assemblages are incompatible.
The East African Orogeny (EAO) is the main stage in the Neoproterozoic assembly of East and West Gondwana along the Mozambique Belt.
The Western Block of the North China Craton is an ancient micro-continental block mainly composed of Neoarchean and Paleoproterozoic rock basement, with some parts overlain by Cambrian to Cenozoic volcanic and sedimentary rocks. It is one of two sub-blocks within the North China Craton, located in east-central China. The boundaries of the Western Block are slightly different among distinct models, but the shapes and areas are similar. There is a broad consensus that the Western Block covers a large part of the east-central China.
A continent is a large geographical region defined by the continental shelves and the cultures on the continent. In the modern day, there are seven continents. However, there have been more continents throughout history. Vaalbara was the first supercontinent. Europe is the newest continent. Geologists have predicted that certain continents will appear, these being Pangaea Proxima, Novopangaea, Aurica, and Amasia.
The Dharwar Craton is an Archean continental crust craton formed between 3.6-2.5 billion years ago (Ga), which is located in southern India and considered the oldest part of the Indian peninsula.