Low-grade myofibroblastic sarcoma

Last updated
Low-grade myofibroblastic sarcoma
Other namesIntermediate-grade myofibroblastic sarcoma is now regarded as a low-grade myofibroblastic sarcoma
Symptoms Tumor, sometimes painful
Complications Post-surgical recurrences; uncommonly metastasizes
Usual onsetAll ages
CausesUnknown
TreatmentSurgical removal of tumor
Prognosis Guarded
DeathsUncommon

Low-grade myofibroblastic sarcoma (LGMS) is a subtype of the malignant sarcomas. [1] As it is currently recognized, LGMS was first described as a rare, atypical myofibroblastic tumor (i.e. a tumor consisting of cells with the microscopic features of fibroblasts and smooth muscle cells) by Mentzel et al. in 1998. [2] Myofibroblastic sarcomas had been divided into low-grade myofibroblastic sarcomas, intermediate‐grade myofibroblasic sarcomas, i.e. IGMS, and high‐grade myofibroblasic sarcomas, i.e. HGMS (also termed undifferentiated pleomorphic sarcoma and pleomorphic myofibrosarcoma [and formerly termed malignant fibrous histiocytoma [3] ]) based on their microscopic morphological, immunophenotypic, and malignancy features. [4] LGMS and IGMS are now classified together [5] by the World Health Organization (WHO), 2020, in the category of intermediate (rarely metastasizing) fibroblastic and myofibroblastic tumors. [6] WHO, 2020, classifies HGMS (preferred name: undifferentiated pleomorphic sarcoma) as a soft tissue tumor in the category of tumors of uncertain differentiation. [7] This article follows the WHO classification: here, LGMS includes IGMS but not HGMS which is a more aggressive and metastasizing tumor than LGMS [8] and consists of cells of uncertain origin. [4]

Contents

LGMS tumors are typically painless lesions that develop in: 1) the subcutaneous tissues, i.e. the lowermost layer of the skin; [9] 2) submucosa, i.e. the thin layer of tissue lying just below the mucous membranes that line passageways such as the gastrointestinal, respiratory, genitourinary tracts; [8] 3) muscles; and 4) bones. [9] They most often develop in middle-aged adults (average: 40 years old) but have been diagnosed in all age-groups. [8] These tumors often recur at the sites of their surgical removal and may metastasize to nearby lymph nodes and distant tissues. [10]

LGMS's are commonly treated by surgical removal of the tumor along with all its cells, which if not removed increase the probability that the tumor will recur at the site of its removal. [1] LGMS tumors typically show little or no sensitivity to radiotherapy and chemotherapy treatments. [11]

Presentation

LGMS present as single tumors that ranged in size from 0.4 to 24.0 cm in three literature review studies. [1] [4] [12] In another study, 103 individuals diagnosed with LGMS were aged 2–75 years (median: 43 years) with 12.6% < 18 years, 65.1% 18–60 years, and 22.3% >60  years old. Eighty-two percent of their LGMS tumors were located in soft tissues (28.2% in mucous membranes, 21.8% in muscle, 19.2% in skin, and 12.9% in other soft tissues) and 18% were in bone. Overall, 51.5% of their tumors were in the head and neck areas (most commonly the tongue, followed by the larynx, gums, mandible, face, skull, and ear canal), 25.2% were in the trunk, and 23.3% were in an arm or leg. Bone tumors were located in the femurs, mandible, maxilla, tibias, or in one case each the hard palate and sacrum. [1] In other reports, the tumors occurred in the oral mucosa, lip, [13] groin, small intestine, greater omentum or lesser omentum (which omentum not defined), [2] heart, [10] eye socket (in an 11 month old infant), [14] and chest wall/breast. [15] While typically presenting as slow growing, painless masses, some individuals have presented with increasingly painful subcutaneous or submucosal masses (16 of 50 individuals reported pain in one retrospective study). [1] Rare cases of submucosal LGMS tumors have presented with more serious symptoms such as partial bowel obstructions due to intrabdominal LGMS tumors, [2] [10] shortness of breath and palpitations due to a LGMS tumor in the heart, [16] difficulty in swallowing and breathing due to a laryngeal LGMS tumor, [17] and abdominal pain due to a pancreas LGMS tumor. [18] A study of 96 individuals presenting for the first time with LGMS found that 51.0% had local disease, 25.0% had regional disease, 15.6% had metastases to the local lymph nodes, and 8.3% had distant metastases. [11] (In the study 103 individuals, the distant metastasis rate was 4.4%. [1] ) Metastasis have been reported to develop in various sites including the lungs, [2] [11] pleura, lymph nodes, bones, thoracic cavity, abdominal cavity, peritoneum, [10] heart, [11] brain, and spinal cord. [19]

Pathology

Microscopic histopathological analyses of hematoxylin and eosin stained LGMS tissues generally show bundles of atypical spindle-shaped cells in a variably hyalinized (i.e. glassy appearing) stromal background containing collagen fibers. [9] The tumors are not encapsulated and commonly infiltrate adjacent fibrous, fat, or skeletal muscle tissues. [4] (The tumor's spindle-shaped cells may infiltrate between individual skeletal muscle fibers [2] to create a characteristic checkerboard pattern. [9] ) LGMS tissues commonly have small or more extensive foci of epithelioid (i.e. epithelial-like) cells with a polygonal shape. [20] In a minority of cases, the tumor tissues have scattered mast cells, sites of numerous neutrophils, [2] and areas of necrosis (i.e. dead or dying cells). [4]

Immunohistochemical analyses find that the LGMS tumors' spindle-shaped cells commonly express ACTA2 (also known α-smooth muscle actin) and desmin (i.e. an intermediate filament protein found in all muscle forms including smooth muscle) proteins, [8] with some tumors composed of cells expressing both of these proteins and other tumors composed of cells expressing only one of them. [8] [9] [13] [20] The tumor cells often express vimentin and SMARCB1 (also termed INI-1 and SNF5) proteins but typically fail to express CD34, S-100, CD34, STAT6, CD68, CD56, cytokeratin, ERG, β-catenin, or myogenin proteins. [14] [13] The epithelioid, polygonal-shaped cells express cytokeratin and TP63 proteins. [20]

Chromosome and gene abnormalities

Various chromosome abnormalities have been found in the tumor cells of a few LGMS cases. A ring chromosome and/or giant marker chromosome, which commonly occur in the cells of various mesenchymal tumors, [21] were found in one case of LGMS. [2] In addition, these tumor cells may, in rare cases, contain copy number variations such as gains in the genetic material on the short (i.e. 'p') arm of chromosomes 1, 12, and 5 and losses in genetic material on the long (i.e. 'q') arm of chromosome 15. [14] These chromosome abnormalities are considered non-specific. [2] [14] Analysis of LGMS tumor cells for chromosome and gene abnormalities has not yet been helpful in understanding or diagnosing the disorder. [14]

Diagnosis

LGMS should be suspected in cases presenting as nodular masses composed of spindle-shaped cells combining fibroblast and smooth muscle cell features that are arranged in bundles and express α-smooth muscle actin [20] and/or desmin proteins [9] but not vimentin, S-100, CD34 or other marker proteins cited in the previous section. Spindle-shaped cell infiltrations between individual skeletal muscle fibers that form a checkerboard pattern [9] and the presence of foci containing epithelioid, polygonal cells that express cytokeratin and TP63 proteins [20] are also indicative of a LGMS tumor.

Treatment and prognosis

Past treatments for LGMS, including surgery, radiotherapy, and chemotherapy, have not been systematically investigated nor validated. [8] Currently, the primary and most common treatment for non-metastatic LGMS is surgical resection with, where possible, removal of all tumor cells in order to reduce this tumor's recurrence rate (e.g. ~27% and ~38% in two different studies). [1] Following this surgery, individuals should undergo long-term observation to check for post-surgical recurrences and the uncommon instances of metastases. [8] [10] One study suggested that tumor cells with high rates of proliferation, tumors containing areas of necrosis, tumor sizes >10 cm in largest diameters, and deep-seated tumors are at higher risks for metastasizing. [17]

Radiotherapy and chemotherapy have been used with or without surgical resections to treat cases in which tumor resections were later found to leave tumor cells behind, in which tumors could not be safely resected, and in which metastases were present. [1] [2] [11] In the study of 96 individuals presenting with LGMS tumors for the first time, 89.6% received surgical treatment, 29.2% received radiation treatment, and 20% received chemotherapy. The study concluded that radiotherapy and chemotherapy had limited effects on survival and therefore should not be routinely used in LGMS, especially for cases in which all tumor cells are removed. [11] These results and conclusions agree with previous reports finding that LGMS tumors are insensitive to radiotherapy and chemotherapy. [10] Nonetheless, there have been case reports that local radiotherapy may allow longer survival periods [10] and may, in select cases, be useful for treating LGMS. [11] A similar situation exists with chemotherapy: some reports recommend chemotherapy as a potential treatment strategy, particularly when complete excision of the tumor is not possible, when the tumor is highly invasive, and/or when the tumor has spread to lymph nodes and/or distant tissues. [11] There are case reports where chemotherapy following surgical excision may have been useful in prolonging progression-free survival, for example, in an individual with a pancreatic LGMS tumor (treatment regimen: ifosfamide, pirarubicin, and nedaplatin). [18] Further studies are needed to define the usefulness of radiation therapy and chemotherapy in LGMS. [10]

The majority of studies on the prognosis of patients treated for LGMS have focused on short-term (i.e. one-year) follow-up times. [10] One study of 49 patients (age range: 29.5–64.5; average age: 46.2 years; median age: 51.0 years) treated for LGFS reported overall survival percentages at 3 and 5 years of 75.0% and 71.6%, respectively. Their disease-specific survival (i.e. excluding deaths from causes unrelated to LGMS) at 3 and 5 years after treatment were 80.0% and 76.3%, respectively. These patients were treated with surgery in 93.9% of cases and radiotherapy in 26.5% of cases but no patients had lymph node metastasis and only 1 case had distant metastases (the presence of lymph node and distant tissue metastasis was unknown in 8 patients). [12] The study of 96 individuals treated for LFMS reported 1, 3, 5, and 10-year disease-specific survival percentages of 88%, 77%, 70%, and 59%, respectively. Patient age >60 years was the only factor that clearly reduced survival times in this study (disease specific survival times for patients 60 years old or younger and >60 years were 167.1 and 92.5 months, respectively). [11]

Related Research Articles

<span class="mw-page-title-main">Sarcoma</span> Medical condition

A sarcoma is a malignant tumor, a type of cancer that arises from cells of mesenchymal origin. Connective tissue is a broad term that includes bone, cartilage, fat, vascular, or other structural tissues, and sarcomas can arise in any of these types of tissues. As a result, there are many subtypes of sarcoma, which are classified based on the specific tissue and type of cell from which the tumor originates. Sarcomas are primary connective tissue tumors, meaning that they arise in connective tissues. This is in contrast to secondary connective tissue tumors, which occur when a cancer from elsewhere in the body spreads to the connective tissue. Sarcomas are one of five different types of cancer, classified by the cell type from which they originate. The word sarcoma is derived from the Greek σάρκωμα sarkōma 'fleshy excrescence or substance', itself from σάρξsarx meaning 'flesh'.

<span class="mw-page-title-main">Dermatofibrosarcoma protuberans</span> Medical condition

Dermatofibrosarcoma protuberans (DFSP) is a rare locally aggressive malignant cutaneous soft-tissue sarcoma. DFSP develops in the connective tissue cells in the middle layer of the skin (dermis). Estimates of the overall occurrence of DFSP in the United States are 0.8 to 4.5 cases per million persons per year. In the United States, DFSP accounts for between 1 and 6 percent of all soft-tissue sarcomas and 18 percent of all cutaneous soft-tissue sarcomas. In the Surveillance, Epidemiology and End Results (SEER) tumor registry from 1992 through 2004, DFSP was second only to Kaposi sarcoma.

<span class="mw-page-title-main">Liposarcoma</span> Medical condition

Liposarcomas are the most common subtype of soft tissue sarcomas, accounting for at least 20% of all sarcomas in adults. Soft tissue sarcomas are rare neoplasms with over 150 different histological subtypes or forms. Liposarcomas arise from the precursor lipoblasts of the adipocytes in adipose tissues. Adipose tissues are distributed throughout the body, including such sites as the deep and more superficial layers of subcutaneous tissues as well as in less surgically accessible sites like the retroperitoneum and visceral fat inside the abdominal cavity.

<span class="mw-page-title-main">Synovial sarcoma</span> Medical condition

A synovial sarcoma is a rare form of cancer which occurs primarily in the extremities of the arms or legs, often in proximity to joint capsules and tendon sheaths. It is a type of soft-tissue sarcoma.

<span class="mw-page-title-main">Undifferentiated pleomorphic sarcoma</span> Medical condition

Undifferentiated pleomorphic sarcoma (UPS), also termed pleomorphic myofibrosarcoma, high-grade myofibroblastic sarcoma, and high-grade myofibrosarcoma, is characterized by the World Health Organization (WHO), 2020, as a rare, poorly differentiated neoplasm, i.e. an abnormal growth of cells that have an unclear identity and/or cell of origin. WHO classified it as one of the undifferentiated/unclassified sarcomas in the category of tumors of uncertain differentiation. Sarcomas are cancers known or thought to derive from mesenchymal stem cells that typically develop in bone, muscle, fat, blood vessels, lymphatic vessels, tendons, and ligaments. More than 70 sarcoma subtypes have been described. The UPS subtype of these sarcomas consists of tumor cells that are poorly differentiated and may appear as spindle-shaped cells, histiocytes, and giant cells. UPS is considered a diagnosis that defies formal sub-classification after thorough histologic, immunohistochemical, and ultrastructural examinations fail to identify the type of cells involved.

<span class="mw-page-title-main">Mesoblastic nephroma</span> Medical condition

Congenital mesoblastic nephroma, while rare, is the most common kidney neoplasm diagnosed in the first three months of life and accounts for 3-5% of all childhood renal neoplasms. This neoplasm is generally non-aggressive and amenable to surgical removal. However, a readily identifiable subset of these kidney tumors has a more malignant potential and is capable of causing life-threatening metastases. Congenital mesoblastic nephroma was first named as such in 1967 but was recognized decades before this as fetal renal hamartoma or leiomyomatous renal hamartoma.

Fibrous hamartoma of infancy (FHI) is a rare, typically painless, benign tumor that develops in the subcutaneous tissues of the axilla, arms, external genitalia, or, less commonly, various other areas. It is diagnosed in children who are usually less than 2 years old or, in up to 20% of cases, develops in utero and is diagnosed in an infant at birth.

<span class="mw-page-title-main">Low-grade fibromyxoid sarcoma</span> Medical condition

Low-grade fibromyxoid sarcoma (LGFMS) is a rare type of low-grade sarcoma first described by H. L. Evans in 1987. LGFMS are soft tissue tumors of the mesenchyme-derived connective tissues; on microscopic examination, they are found to be composed of spindle-shaped cells that resemble fibroblasts. These fibroblastic, spindle-shaped cells are neoplastic cells that in most cases of LGFMS express fusion genes, i.e. genes composed of parts of two different genes that form as a result of mutations. The World Health Organization (2020) classified LGFMS as a specific type of tumor in the category of malignant fibroblastic and myofibroblastic tumors.

<span class="mw-page-title-main">Inflammatory myofibroblastic tumour</span> Medical condition

Inflammatory myofibroblastic tumor (IMT) is a rare neoplasm of the mesodermal cells that form the connective tissues which support virtually all of the organs and tissues of the body. IMT was formerly termed inflammatory pseudotumor. Currently, however, inflammatory pseudotumor designates a large and heterogeneous group of soft tissue tumors that includes inflammatory myofibroblastic tumor, plasma cell granuloma, xanthomatous pseudotumor, solitary mast cell granuloma, inflammatory fibrosarcoma, pseudosarcomatous myofibroblastic proliferation, myofibroblastoma, inflammatory myofibrohistiocytic proliferation, and other tumors that develop from connective tissue cells. Inflammatory pseudotumour is a generic term applied to various neoplastic and non-neoplastic tissue lesions which share a common microscopic appearance consisting of spindle cells and a prominent presence of the white blood cells that populate chronic or, less commonly, acute inflamed tissues.

<span class="mw-page-title-main">Mammary-type myofibroblastoma</span> Medical condition

Mammary-type myofibroblastoma (MFB), also named mammary and extramammary myofibroblastoma, was first termed myofibrolastoma of the breast, or, more simply, either mammary myofibroblastoma (MMFB) or just myofibroblastoma. The change in this terminology occurred because the initial 1987 study and many subsequent studies found this tumor only in breast tissue. However, a 2001 study followed by numerous reports found tumors with the microscopic histopathology and other key features of mammary MFB in a wide range of organs and tissues. Further complicating the issue, early studies on MFB classified it as one of various types of spindle cell tumors that, except for MFB, were ill-defined. These other tumors, which have often been named interchangeably in different reports, are: myelofibroblastoma, benign spindle cell tumor, fibroma, spindle cell lipoma, myogenic stromal tumor, and solitary stromal tumor. Finally, studies suggest that spindle cell lipoma and cellular angiofibroma are variants of MFB. Here, the latter two tumors are tentatively classified as MFB variants but otherwise MFB is described as it is more strictly defined in most recent publications. The World Health Organization in 2020 classified mammary type myofibroblastoma tumors and myofibroblastoma tumors as separate tumor forms within the category of fibroblastic and myofibroblastic tumors.

Acral myxoinflammatory fibroblastic sarcoma (AMSF), also termed myxoinflammatory fibroblastic sarcoma (MSF), is a rare, low-grade, soft tissue tumor that the World Health Organization (2020) classified as in the category of rarely metastasizing fibroblastic and myofibroblastic tumors. It is a locally aggressive neoplasm that often recurs at the site of its surgical removal. However, it usually grows slowly and in only 1–2% of cases spreads to distant tissues.

<span class="mw-page-title-main">Proliferative fasciitis and proliferative myositis</span> Medical condition

Proliferative fasciitis and proliferative myositis (PF/PM) are rare benign soft tissue lesions that increase in size over several weeks and often regress over the ensuing 1–3 months. The lesions in PF/PM are typically obvious tumors or swellings. Historically, many studies had grouped the two descriptive forms of PF/PM as similar disorders with the exception that proliferative fasciitis occurs in subcutaneous tissues while proliferative myositis occurs in muscle tissues. In 2020, the World Health Organization agreed with this view and defined these lesions as virtually identical disorders termed proliferative fasciitis/proliferative myositis or proliferative fasciitis and proliferative myositis. The Organization also classified them as one of the various forms of the fibroblastic and myofibroblastic tumors.

Lipofibromatosis-like neural tumor (LPF-NT) is an extremely rare soft tissue tumor first described by Agaram et al in 2016. As of mid-2021, at least 39 cases of LPF-NT have been reported in the literature. LPF-NT tumors have several features that resemble lipofibromatosis (LPF) tumors, malignant peripheral nerve sheath tumors, spindle cell sarcomas, low-grade neural tumors, peripheral nerve sheath tumors, and other less clearly defined tumors; Prior to the Agaram at al report, LPF-NTs were likely diagnosed as variants or atypical forms of these tumors. The analyses of Agaram at al and subsequent studies uncovered critical differences between LPF-NT and the other tumor forms which suggest that it is a distinct tumor entity differing not only from lipofibromatosis but also the other tumor forms.

Myxofibrosarcoma (MFS), although a rare type of tumor, is one of the most common soft tissue sarcomas, i.e. cancerous tumors, that develop in the soft tissues of elderly individuals. Initially considered to be a type of histiocytoma termed fibrous histiocytoma or myxoid variant of malignant fibrous histiocytoma, Angervall et al. termed this tumor myxofibrosarcoma in 1977. In 2020, the World Health Organization reclassified MFS as a separate and distinct tumor in the category of malignant fibroblastic and myofibroblastic tumors.

Sclerosing epithelioid fibrosarcoma (SEF) is a very rare malignant tumor of soft tissues that on microscopic examination consists of small round or ovoid neoplastic epithelioid fibroblast-like cells, i.e. cells that have features resembling both epithelioid cells and fibroblasts. In 2020, the World Health Organization classified SEF as a distinct tumor type in the category of malignant fibroblastic and myofibroblastic tumors. However, current studies have reported that low-grade fibromyxoid sarcoma (LGFMS) has many clinically and pathologically important features characteristic of SEF; these studies suggest that LGSFMS may be an early form of, and over time progress to become, a SEF. Since the World Health Organization has classified LGFMS as one of the malignant fibroblastic and myofibroblastic tumors that is distinctly different than SEF, SEF and LGFMS are here regarded as different tumor forms.

Mammary secretory carcinoma (MSC), also termed secretory carcinoma of the breast, is a rare form of the breast cancers. MSC usually affects women but in a significant percentage of cases also occurs in men and children. Indeed, McDvitt and Stewart first described MSC in 1966 and termed it juvenile breast carcinoma because an increased number of cases were at that time diagnosed in juvenile females. MSC is the most common form of breast cancer in children, representing 80% of childhood breast cancers, although it accounts for less than 0.15% of all breast cancers.

Angiofibroma of soft tissue (AFST), also termed angiofibroma, not otherwise specified, is a recently recognized and rare disorder that was classified in the category of benign fibroblastic and myofibroblastic tumors by the World Health Organization in 2020. An AFST tumor is a neoplasm that was first described by A. Mariño-Enríquez and C.D. Fletcher in 2012.

Dermatofibrosarcoma protuberans, fibrosarcomatous (DFSP-FS), also termed fibrosarcomatous dermatofibrosarcoma protuberans, is a rare type of tumor located in the dermis. DFSP-FS tumors have been viewed as: 1) a more aggressive form of the dermatofibrosarcoma protuberans (DFSP) tumors because they have areas that resemble and tend to behave like malignant fibrosarcomas or 2) as a distinctly different tumor than DFSP. DFSP-FS tumors are related to DFSP. For example, surgically removed DFSP tumors often recur with newly developed fibrobosarcoma-like areas. Nonetheless, the World Health Organization (WHO), 2020, classified DFSP and DFSP-FS as different tumors with DFSP being in the category of benign and DFSP-FS in the category of rarely metastasizing fibroblastic and myofibroblastic tumors. This article follows the WHO classification: the 5-15% of DFSP tumors that have any areas of fibrosarcomatous microscopic histopathology are here considered DFSP-FS rather than DFSP tumors.

Papillary carcinomas of the breast (PCB), also termed malignant papillary carcinomas of the breast, are rare forms of the breast cancers. The World Health Organization (2019) classified papillary neoplasms of the breast into 5 types: intraductal papilloma, papillary ductal carcinoma in situ (PDCIS), encapsulated papillary carcinoma (EPC), solid-papillary carcinoma (SPC), and invasive papillary carcinoma (IPC). The latter four carcinomas are considered here; intraductal papilloma is a benign neoplasm. The World Health Organization regarded solid papillary carcinoma as having two subtypes: in situ and invasive SPC.

<span class="mw-page-title-main">Invasive cribriform carcinoma of the breast</span> Medical condition

Invasive cribriform carcinoma of the breast (ICCB), also termed invasive cribriform carcinoma, is a rare type of breast cancer that accounts for 0.3% to 0.6% of all carcinomas in the breast. It originates in a lactiferous duct as opposed to the lobules that form the alveoli in the breasts' mammary glands. ICCB was first described by Dixon and colleagues in 1983 as a tumor that on microscopic histopathological inspection had a cribriform pattern, i.e. a tissue pattern consisting of numerous "Swiss cheese"-like open spaces and/or sieve-like small holes. The latest edition (2019) of the World Health Organization (2019) termed these lesions invasive cribriform carcinomas indicating that by definition they must have a component that invades out of their ducts of origin into adjacent tissues. In situ ductal cancers that have a cribriform histopathology are regarded as belonging to the group of ductal carcinoma in situ tumors.

References

  1. 1 2 3 4 5 6 7 8 Yonezawa H, Yamamoto N, Hayashi K, Takeuchi A, Miwa S, Igarashi K, Langit MB, Kimura H, Shimozaki S, Kato T, Morinaga S, Araki Y, Asano Y, Ikeda H, Nojima T, Tsuchiya H (December 2020). "Low-grade myofibroblastic sarcoma of the levator scapulae muscle: a case report and literature review". BMC Musculoskeletal Disorders. 21 (1): 836. doi: 10.1186/s12891-020-03857-3 . PMC   7731512 . PMID   33302922.
  2. 1 2 3 4 5 6 7 8 9 Mentzel T, Dry S, Katenkamp D, Fletcher CD (October 1998). "Low-grade myofibroblastic sarcoma: analysis of 18 cases in the spectrum of myofibroblastic tumors". The American Journal of Surgical Pathology. 22 (10): 1228–38. doi:10.1097/00000478-199810000-00008. PMID   9777985.
  3. Zhao KY, Yan X, Yao PF, Mei J (September 2021). "Malignant fibrous histiocytoma of the bone in a traumatic amputation stump: A case report and review of the literature". World Journal of Clinical Cases. 9 (26): 7930–7936. doi: 10.12998/wjcc.v9.i26.7930 . PMC   8462244 . PMID   34621848.
  4. 1 2 3 4 5 Fisher C (September 2004). "Myofibrosarcoma". Virchows Archiv. 445 (3): 215–23. doi:10.1007/s00428-004-1038-9. PMID   15173943. S2CID   220565385.
  5. Zhao R, Wang J, Zhang H, Chi Y, Bi N (October 2020). "High-grade myofibroblastic sarcoma of the pleura: A case report and literature review". Thoracic Cancer. 11 (10): 3011–3014. doi:10.1111/1759-7714.13613. PMC   7529570 . PMID   32815307.
  6. Sbaraglia M, Bellan E, Dei Tos AP (April 2021). "The 2020 WHO Classification of Soft Tissue Tumours: news and perspectives". Pathologica. 113 (2): 70–84. doi:10.32074/1591-951X-213. PMC   8167394 . PMID   33179614.
  7. Choi JH, Ro JY (January 2021). "The 2020 WHO Classification of Tumors of Soft Tissue: Selected Changes and New Entities". Advances in Anatomic Pathology. 28 (1): 44–58. doi:10.1097/PAP.0000000000000284. PMID   32960834. S2CID   221862064.
  8. 1 2 3 4 5 6 7 Mulay K, Sen M, Honavar SG (November 2020). "Limbal, low-grade myofibroblastic sarcoma: Case report and literature review". Indian Journal of Ophthalmology. 68 (11): 2538–2540. doi: 10.4103/ijo.IJO_2410_20 . PMC   7774147 . PMID   33120683.
  9. 1 2 3 4 5 6 7 Baranov E, Hornick JL (March 2020). "Soft Tissue Special Issue: Fibroblastic and Myofibroblastic Neoplasms of the Head and Neck". Head and Neck Pathology. 14 (1): 43–58. doi:10.1007/s12105-019-01104-3. PMC   7021862 . PMID   31950474.
  10. 1 2 3 4 5 6 7 8 9 Wu X, Guo L, Li S, Zheng Y, Fan B, Zhou C (January 2020). "Low-grade myofibroblastic sarcoma with abdominal pain, a stuffy nose, hearing loss, and multiple cavity effusion: a case report and literature review". The Journal of International Medical Research. 48 (1): 300060519895661. doi:10.1177/0300060519895661. PMC   7114293 . PMID   31975633.
  11. 1 2 3 4 5 6 7 8 9 Xu Y, Xu G, Wang X, Mao M, Wu H, Baklaushev VP, Chekhonin VP, Peltzer K, Wang G, Zhang C (February 2021). "Is there a role for chemotherapy and radiation in the treatment of patients with low-grade myofibroblastic sarcoma?". Clinical & Translational Oncology. 23 (2): 344–352. doi:10.1007/s12094-020-02425-4. PMID   32607812. S2CID   220286531.
  12. 1 2 Chan JY, Gooi Z, Wong EW, Ng SK, Tong MC, Vlantis AC (January 2017). "Low-grade myofibroblastic sarcoma: A population-based study". The Laryngoscope. 127 (1): 116–121. doi:10.1002/lary.26146. PMID   27377169. S2CID   9627754.
  13. 1 2 3 Jayasooriya PR, Athukorala C, Attygalla M, Mendis BR, Lombardi T (January 2021). "Low-Grade Myofibroblastic Sarcoma of the Oral Cavity: A Report of Three Cases Illustrating an Emerging Disease in Children". Dermatopathology. 8 (1): 1–9. doi: 10.3390/dermatopathology8010001 . PMC   7838777 . PMID   33401376.
  14. 1 2 3 4 5 Tang L, Xu H, Gao H, Yang H, Chen S, Zhang P (November 2020). "Primary low-grade myofibroblastic sarcoma: A rare case report of this tumor in the orbit and literature review". European Journal of Ophthalmology. 32 (2): NP67–NP70. doi:10.1177/1120672120970392. PMID   33198493. S2CID   226988997.
  15. Katalinic D, Santek F (May 2017). "Giant low-grade primary myofibroblastic sarcoma of the posterior chest wall". World Journal of Surgical Oncology. 15 (1): 96. doi: 10.1186/s12957-017-1167-7 . PMC   5415824 . PMID   28468630.
  16. Oylumlu M, Yildiz A, Ercan S, Oylumlu M, Davutoglu V (2014). "Cardiac metastasis of a low-grade myofibroblastic sarcoma". Echocardiography (Mount Kisco, N.Y.). 31 (1): E1–4. doi:10.1111/echo.12370. PMID   24111760. S2CID   7195357.
  17. 1 2 Nair NP, Kaushal D, Rao M, Soni K, Vaithankalath S (October 2020). "Evaluation and Management of an Uncommon Tumor of the Larynx: A Case Report and Literature Review of Laryngeal Low-Grade Myofibroblastic Sarcoma". Cureus. 12 (10): e11072. doi: 10.7759/cureus.11072 . PMC   7676948 . PMID   33224666.
  18. 1 2 Peng L, Tu Y, Li Y, Xiao W (September 2018). "Low-grade myofibroblastic sarcoma of the pancreas: A case report and literature review". Journal of Cancer Research and Therapeutics. 14 (Supplement): S796–S799. doi: 10.4103/0973-1482.183551 . PMID   30249907. S2CID   52814348.
  19. Lehoczky T, Halasy M (May 1966). "[Depression and biochemistry--Results of Nuredal therapy]". Orvosi Hetilap (in Hungarian). 107 (18): 819–23. PMID   5328880.
  20. 1 2 3 4 5 Magro G, Salvatorelli L, Puzzo L, Piombino E, Bartoloni G, Broggi G, Vecchio GM (December 2019). "Practical approach to diagnosis of bland-looking spindle cell lesions of the breast". Pathologica. 111 (4): 344–360. doi:10.32074/1591-951X-31-19. PMC   8145669 . PMID   31965112.
  21. Nishio J, Aoki M, Nabeshima K, Iwasaki H, Naito M (August 2012). "Characterization of giant marker and ring chromosomes in a pleomorphic leiomyosarcoma of soft tissue by spectral karyotyping". Oncology Reports. 28 (2): 533–8. doi: 10.3892/or.2012.1835 . PMID   22641359.