Lysobacter | |
---|---|
Attachment of Lysobacter enzymogenes strain C3 to fungal hyphae of Magnaporthe oryzae (also known as rice blast and gray leaf spot of turfgrass) | |
Scientific classification | |
Domain: | |
Phylum: | |
Class: | |
Order: | |
Family: | |
Genus: | Lysobacter |
The genus Lysobacter belongs to the family Xanthomonadaceae within the Gammaproteobacteria and includes at least 46 named species, including: Lysobacter enzymogenes, L. antibioticus, L. gummosus, L. brunescens, L. defluvii, L. niabensis, L. niastensis, L. daejeonensis, L. yangpyeongensis, L. koreensis, L. concretionis, L. spongiicola, and L. capsici. [1] [2] [3] [4] [5] [6] [7] [8] Lysobacter spp. were originally grouped with myxobacteria because they shared the distinctive trait of gliding motility, but they uniquely display a number of traits that distinguish them from other taxonomically and ecologically related microbes including high genomic G+C content (typically ranging between 65 and 72%) and the lack of flagella. [2] [9] The feature of gliding motility alone has piqued the interest of many, since the role of gliding bacteria in soil ecology is poorly understood. In addition, while a number of different mechanisms have been proposed for gliding motility among a wide range of bacterial species, [10] the genetic mechanism in Lysobacter remains unknown. Members of the Lysobacter group have gained broad interest for production of extracellular enzymes. [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] The group is also regarded as a rich source for production of novel antibiotics, such as β-lactams containing substituted side chains, macrocyclic lactams and macrocyclic peptide or depsipeptide antibiotics like the katanosins. [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35]
Lysobacter spp. have been described as ubiquitous inhabitants of soil and water. [2] Their presence has been largely ignored, since members often are minor components in sample screenings when using conventional isolation procedures. However, because of improved molecular methods of identification and better descriptions for the genus, their agricultural relevance is becoming increasingly evident, especially as members of ecologically significant microbial communities associated with soil and plants. [4] [9] [36] [37] [38] [39] [40] [41] [42] Recent evidence suggests Lysobacter spp. may occupy a wide range of ecological niches beyond those associated with plants, including a broad range of 'extreme' environments. For example, 16S rDNA phylogenetic analyses show Lysobacter clades that include sequences obtained from hydrothermal vents, isolates from Mt. Pinatubo mud flows and upflow anaerobic blanket sludge reactors, and an iron-oxidizing, microaerophilic lithotroph. [1] [4] [9] [43]
Lysobacter gummosus was discovered living on the skin of redback salamanders and producing 2,4-diacetylphloroglucinol, a chemical which inhibits the growth of certain pathogenic fungi. [44]
The potential of Lysobacter species as biological control agents for plant diseases has been recognized. [9] [43] Among L. enzymogenes strains, C3 is the most thoroughly characterized strain at both the molecular and biological levels. The ecological versatility of the strain is reflected by the range of diseases it is able to control, as well as the various plant hosts and plant parts it is capable of colonizing. For example, L. enzymogenes strain C3 (erroneously identified as Stenotrophomonas maltophilia) has been reported to control foliar diseases such as leaf spot of tall fescue caused by Bipolaris sorokiniana , [45] bean rust caused by Uromyces appendiculatus [46] and Fusarium head blight of wheat. [47] L. enzymogenes strain C3 also has been reported to suppress soilborne diseases, such as brown patch in turfgrass caused by Rhizoctonia solani, [48] the seedling disease Pythium damping-off of sugarbeet [49] and summer patch disease of Kentucky bluegrass caused by the root-infecting Magnaporthe poae . [50] Lysobacter sp. SB-K88 has been found to suppress damping-off disease in sugar beet and spinach through antibiosis and characteristic root colonization in perpendicular fashion Islam et al. (2005).
Lysobacter species have also been isolated from soils suppressive to Rhizoctonia solani . [51] Clay soils with natural suppressiveness against Rhizoctonia contained higher numbers of antagonistic isolates of L. gummosus, L. antibioticus, and/or L. capsici. Although the mechanism behind this phenomenon is not yet understood, it appeared that growing grass/clover increased the number of these Lysobacter species, as well as the Rhizoctonia suppressiveness.
Originally characterized as a biological control agent for plant diseases, L. enzymogenes strain C3 is unique in that it expresses a wide range of mechanisms contributing to microbial antagonism and biological control that are not shared by all strains of the species. The strain produces numerous extracellular enzymes that contribute to biocontrol activity, including multiple forms of β-1,3-glucanases and chitinases. [19] [52] The strain also has been demonstrated to induce systemic resistance in certain plants, protecting them from pathogen infection. [53] [54] In addition, recent studies have indicated important roles for secondary metabolites with antibiotic activity and biosurfactant activity in fungal antagonism. [50] Several of these traits are globally controlled by a regulator encoded by the clp gene. [49] [50] Mutations in clp are intriguing for two reasons. First, the mutant phenotype implies that a broad range of genes is involved in secreted antimicrobials associated with the clp regulon, many of which remain unidentified. The second is that mutations in clp result in significant loss of extracellular enzyme activities and antimicrobial activity displayed by L. enzymogenes strain C3. These activities normally are phenotypically overwhelming and often lead to masking of other phenotypes in standard assays, making mutation effects of non-related genes difficult or nearly impossible to evaluate. However, strains harboring clp gene mutations provide a means to separate clp-regulated phenotypes from others (such as that describe below), thus making their evaluation feasible. Biological control and mode of actions of disease suppression by Lysobacter spp. has been reviewed Islam 2011.
L. enzymogenes strain C3 is a genetically tractable strain allowing for easy construction of gene knockouts, supporting its use as a model genetic system for unraveling the molecular basis of pathogenicity, as well as identifying mechanisms of microbial antagonism and biological control. Indeed, a number of derivative strains of L. enzymogenes strain C3 already have been constructed, including mutants affected in structural genes encoding enzyme activities, the regulatory clp gene and various combinations thereof. [19] [49]
The genus has 46 known species (July 2018): [55] [56]
In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall.
Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). HGT is an important factor in the evolution of many organisms. HGT is influencing scientific understanding of higher order evolution while more significantly shifting perspectives on bacterial evolution.
Pseudomonas is a genus of Gram-negative, Gammaproteobacteria, belonging to the family Pseudomonadaceae and containing 191 described species. The members of the genus demonstrate a great deal of metabolic diversity and consequently are able to colonize a wide range of niches. Their ease of culture in vitro and availability of an increasing number of Pseudomonas strain genome sequences has made the genus an excellent focus for scientific research; the best studied species include P. aeruginosa in its role as an opportunistic human pathogen, the plant pathogen P. syringae, the soil bacterium P. putida, and the plant growth-promoting P. fluorescens, P. lini, P. migulae, and P. graminis.
Pseudomonas fluorescens is a common Gram-negative, rod-shaped bacterium. It belongs to the Pseudomonas genus; 16S rRNA analysis as well as phylogenomic analysis has placed P. fluorescens in the P. fluorescens group within the genus, to which it lends its name.
Acidobacteriota is a phylum of Gram-negative bacteria. Its members are physiologically diverse and ubiquitous, especially in soils, but are under-represented in culture.
Acinetobacter is a genus of gram-negative bacteria belonging to the wider class of Gammaproteobacteria. Acinetobacter species are oxidase-negative, exhibit twitching motility, and occur in pairs under magnification.
Agrobacterium is a genus of Gram-negative bacteria established by H. J. Conn that uses horizontal gene transfer to cause tumors in plants. Agrobacterium tumefaciens is the most commonly studied species in this genus. Agrobacterium is well known for its ability to transfer DNA between itself and plants, and for this reason it has become an important tool for genetic engineering.
Colistin, also known as polymyxin E, is an antibiotic medication used as a last-resort treatment for multidrug-resistant Gram-negative infections including pneumonia. These may involve bacteria such as Pseudomonas aeruginosa, Klebsiella pneumoniae, or Acinetobacter. It comes in two forms: colistimethate sodium can be injected into a vein, injected into a muscle, or inhaled, and colistin sulfate is mainly applied to the skin or taken by mouth. Colistimethate sodium is a prodrug; it is produced by the reaction of colistin with formaldehyde and sodium bisulfite, which leads to the addition of a sulfomethyl group to the primary amines of colistin. Colistimethate sodium is less toxic than colistin when administered parenterally. In aqueous solutions it undergoes hydrolysis to form a complex mixture of partially sulfomethylated derivatives, as well as colistin. Resistance to colistin began to appear as of 2015.
Pseudomonas putida is a Gram-negative, rod-shaped, saprotrophic soil bacterium.
Halomonadaceae is a family of halophilic Pseudomonadota.
Stenotrophomonas maltophilia is an aerobic, nonfermentative, Gram-negative bacterium. It is an uncommon bacterium and human infection is difficult to treat. Initially classified as Bacterium bookeri, then renamed Pseudomonas maltophilia, S. maltophilia was also grouped in the genus Xanthomonas before eventually becoming the type species of the genus Stenotrophomonas in 1993.
Eggerthella is a bacterial genus of Actinomycetota, in the family Coriobacteriaceae. Members of this genus are anaerobic, non-sporulating, non-motile, Gram-positive bacilli that grow singly, as pairs, or in short chains. They are found in the human colon and feces and have been implicated as a cause of ulcerative colitis, liver and anal abscesses and systemic bacteremia.
The Gemmatimonadota are a phylum of bacteria established in 2003. The phylum contains two classes Gemmatimonadetes and Longimicrobia.
Gammaproteobacteria is a class of bacteria in the phylum Pseudomonadota. It contains about 250 genera, which makes it the most genera-rich taxon of the Prokaryotes. Several medically, ecologically, and scientifically important groups of bacteria belong to this class. It is composed by all Gram-negative microbes and is the most phylogenetically and physiologically diverse class of Proteobacteria.
Enterobacter cloacae is a clinically significant Gram-negative, facultatively-anaerobic, rod-shaped bacterium.
The Synergistota is a phylum of anaerobic bacteria that show Gram-negative staining and have rod/vibrioid cell shape. Although Synergistota have a diderm cell envelope, the genes for various proteins involved in lipopolysaccharides biosynthesis have not yet been detected in Synergistota, indicating that they may have an atypical outer cell envelope. The Synergistota inhabit a majority of anaerobic environments including animal gastrointestinal tracts, soil, oil wells, and wastewater treatment plants and they are also present in sites of human diseases such as cysts, abscesses, and areas of periodontal disease. Due to their presence at illness related sites, the Synergistota are suggested to be opportunistic pathogens but they can also be found in healthy individuals in the microbiome of the umbilicus and in normal vaginal flora. Species within this phylum have also been implicated in periodontal disease, gastrointestinal infections and soft tissue infections. Other species from this phylum have been identified as significant contributors in the degradation of sludge for production of biogas in anaerobic digesters and are potential candidates for use in renewable energy production through their production of hydrogen gas. All of the known Synergistota species and genera are presently part of a single class (Synergistia), order (Synergistiales), and family (Synergistaceae).
Staphylococcus is a genus of Gram-positive bacteria in the family Staphylococcaceae from the order Bacillales. Under the microscope, they appear spherical (cocci), and form in grape-like clusters. Staphylococcus species are facultative anaerobic organisms.
Streptomyces isolates have yielded the majority of human, animal, and agricultural antibiotics, as well as a number of fundamental chemotherapy medicines. Streptomyces is the largest antibiotic-producing genus of Actinomycetota, producing chemotherapy, antibacterial, antifungal, antiparasitic drugs, and immunosuppressants. Streptomyces isolates are typically initiated with the aerial hyphal formation from the mycelium.
Streptomyces lavendulae is a species of bacteria from the genus Streptomyces. It is isolated from soils globally and is known for its production of medically useful biologically active metabolites. To see a photo of this organism click here.
A. C. Matin is an Indian-American microbiologist, immunologist, academician and researcher. He is a professor of microbiology and immunology at Stanford University School of Medicine.