MBD4

Last updated
MBD4
Protein MBD4 PDB 1ngn.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases MBD4 , MED1, methyl-CpG binding domain 4, DNA glycosylase
External IDs OMIM: 603574 MGI: 1333850 HomoloGene: 2916 GeneCards: MBD4
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001276270
NM_001276271
NM_001276272
NM_001276273
NM_003925

NM_010774

RefSeq (protein)

NP_001263199
NP_001263200
NP_001263201
NP_001263202
NP_003916

NP_034904

Location (UCSC) Chr 3: 129.43 – 129.44 Mb Chr 6: 115.82 – 115.83 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Methyl-CpG-binding domain protein 4 is a protein that in humans is encoded by the MBD4 gene. [5] [6] [7]

Structure

Human MBD4 protein has 580 amino acids with a methyl-CpG-binding domain at amino acids 82–147 and a C-terminal DNA glycosylase domain at amino acids 426–580. [8] These domains are separated by an intervening region that interacts with UHRF1, an E3 ubiquitin ligase, and USP7, a de-ubiquinating enzyme. [9]

Function

DNA methylation is the major modification of eukaryotic genomes and plays an essential role in mammalian development. Human proteins MECP2, MBD1, MBD2, MBD3, and MBD4 (this gene) comprise a family of nuclear proteins related by the presence in each of a methyl-CpG-binding domain (MBD). Each of these proteins, with the exception of MBD3, is capable of binding specifically to methylated DNA. MBD4 may function to mediate the biological consequences of the methylation signal. In addition, MBD4 has protein sequence similarity to bacterial DNA repair enzymes and thus may have some function in DNA repair. Further, MBD4 gene mutations are detected in tumors with primary microsatellite instability (MSI), a form of genomic instability associated with defective DNA mismatch repair, and MBD4 gene meets 4 of 5 criteria of a bona fide MIS target gene. [7]

Deaminated bases as targets

DesaminierungCtoU.png

Bases in DNA decay spontaneously, and this decay includes hydrolytic deamination of purines and pyrimidines that contain an exocyclic amino group (see image). Hypoxanthine and xanthine are generated at a relatively slow rate by deamination of adenine and guanine, respectively. However, deamination of pyrimidines occurs at a 50-fold higher rate of approximately 200–300 events per cell per day, [8] and is potentially highly mutagenic. Deamination of cytosine (C) to uracil (U) and 5-methylcytosine (5mC) to thymine (T) generates G:U and G:T mismatches, respectively. Upon DNA replication, these mismatches cause C to T transition mutations. Notably, for 5mC deamination, these mutations arise predominantly in the context of CpG sites. The deamination rate of 5mC is approximately three times that of C. MBD4 protein binds preferentially to fully methylated CpG sites and to their deamination derivatives G:U and G:T base pairs. [8] MBD4, which is employed in an initial step of base excision repair, specifically catalyzes the removal of T and U paired with guanine (G) within CpG sites. [10]

Mutational importance of targets

G:U and G:T mismatches, upon DNA replication, give rise to C to T transition mutations. [10] The mismatched U or T is usually removed by MBD4 before replication, thus avoiding mutation. Alternatively, for G:T mismatches, the T may be removed by thymine-DNA glycosylase. Mutations in the MBD4 gene (especially expansions/deletions in the polyadenine regions of the MBD4 gene) increase the genomic instability phenotype of a subset of MMR-defective tumors in mice, specifically contributing to elevated G:C to A:T transitions. [11]

About 1/3 of all intragenic single base pair mutations in human cancers occur in CpG dinucleotides and are the result of C to T or G to A transitions. [10] [12] These transitions comprise the most frequent mutations in human cancer. For example, nearly 50% of somatic mutations of the tumor suppressor gene p53 in colorectal cancer are G:C to A:T transitions within CpG sites. [10]

Clinical significance in cancer

Germline mutations of MBD4

Mono- and biallelic germline mutations of MBD4 have been identified in acute myeloid leukemias, uveal melanomas, and glioblastomas. [13] [14] [15] and monoallelic MBD4 germline mutations have been shown to predispose to uveal melanomas. [16] These cases presented an inactivation of the second allele of MBD4 in tumor and were associated with a subsequent very high mutation burden at CpG dinucleotides.

Somatic mutations of MBD4

Mutation of MBD4 occurs in about 4% of colorectal cancers. [11] MBD4 mutations also occur in tumor samples of melanoma, ovarian, lung, esophageal and prostate cancers at frequencies between 0.5% and 8%. [11]

MBD4 has a special relationship with DNA mismatch repair (MMR). MBD4 protein binds strongly to the MMR protein MLH1. [6] A mutational deficiency in MBD4 causes down-regulation, at the protein level, of MMR proteins Mlh1, Msh2, Pms2, and Msh6 by 5.8-, 5.6-, 2.6-, and 2.7-fold, respectively. [17] In colorectal cancers with mutations in MMR genes, co-occurrence of MBD4 mutations were found in 27% of cancers. [11]

Epigenetic silencing

MBD4 mRNA expression is reduced in colorectal neoplasms due to methylation of the promoter region of MBD4. [18] A majority of histologically normal fields surrounding the neoplastic growths also show reduced MBD4 mRNA expression (a field defect) compared to histologically normal tissue from individuals who never had a colonic neoplasm. This indicates that an epigenetic deficiency in MBD4 expression is a frequent early event in colorectal tumorigenesis.

While other DNA repair genes, such as MGMT and MLH1, are often evaluated for epigenetic repression in many types of cancer,[ citation needed ] epigenetic deficiency of MBD4 is usually not evaluated, but might be of importance in such cancers as well.

Response to checkpoint inhibitors

MBD4-associated hypermutated profile was shown to be associated with a tumor regression when a uveal melanoma patient was treated with a checkpoint inhibitor making these mutations potential biomarkers to treat cancers. [15]

Interactions

MBD4 has been shown to interact with MLH1 [6] and FADD. [19]

Related Research Articles

<span class="mw-page-title-main">CpG site</span> Region of often-methylated DNA with a cytosine followed by a guanine

The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along its 5' → 3' direction. CpG sites occur with high frequency in genomic regions called CpG islands.

<span class="mw-page-title-main">DNA repair</span> Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encodes its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur, including double-strand breaks and DNA crosslinkages. This can eventually lead to malignant tumors, or cancer as per the two-hit hypothesis.

<span class="mw-page-title-main">Hereditary nonpolyposis colorectal cancer</span> Autosomal dominant genetic condition associated with a high risk of cancer eg in the colon

Hereditary nonpolyposis colorectal cancer (HNPCC) is a hereditary predisposition to colon cancer.

<span class="mw-page-title-main">Neoplasm</span> Abnormal mass of tissue as a result of abnormal growth or division of cells

A neoplasm is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists in growing abnormally, even if the original trigger is removed. This abnormal growth usually forms a mass, when it may be called a tumour or tumor.

DNA glycosylases are a family of enzymes involved in base excision repair, classified under EC number EC 3.2.2. Base excision repair is the mechanism by which damaged bases in DNA are removed and replaced. DNA glycosylases catalyze the first step of this process. They remove the damaged nitrogenous base while leaving the sugar-phosphate backbone intact, creating an apurinic/apyrimidinic site, commonly referred to as an AP site. This is accomplished by flipping the damaged base out of the double helix followed by cleavage of the N-glycosidic bond.

<span class="mw-page-title-main">DNA mismatch repair</span> System for fixing base errors of DNA replication

DNA mismatch repair (MMR) is a system for recognizing and repairing erroneous insertion, deletion, and mis-incorporation of bases that can arise during DNA replication and recombination, as well as repairing some forms of DNA damage.

<span class="mw-page-title-main">Base excision repair</span> DNA repair process

Base excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from the genome. The related nucleotide excision repair pathway repairs bulky helix-distorting lesions. BER is important for removing damaged bases that could otherwise cause mutations by mispairing or lead to breaks in DNA during replication. BER is initiated by DNA glycosylases, which recognize and remove specific damaged or inappropriate bases, forming AP sites. These are then cleaved by an AP endonuclease. The resulting single-strand break can then be processed by either short-patch or long-patch BER.

<span class="mw-page-title-main">MUTYH</span> Protein-coding gene in the species Homo sapiens

MUTYH is a human gene that encodes a DNA glycosylase, MUTYH glycosylase. It is involved in oxidative DNA damage repair and is part of the base excision repair pathway. The enzyme excises adenine bases from the DNA backbone at sites where adenine is inappropriately paired with guanine, cytosine, or 8-oxo-7,8-dihydroguanine, a common form of oxidative DNA damage.

<span class="mw-page-title-main">Microsatellite instability</span> Condition of genetic hypermutability

Microsatellite instability (MSI) is the condition of genetic hypermutability that results from impaired DNA mismatch repair (MMR). The presence of MSI represents phenotypic evidence that MMR is not functioning normally.

<span class="mw-page-title-main">MSH2</span> Protein-coding gene in the species Homo sapiens

DNA mismatch repair protein Msh2 also known as MutS homolog 2 or MSH2 is a protein that in humans is encoded by the MSH2 gene, which is located on chromosome 2. MSH2 is a tumor suppressor gene and more specifically a caretaker gene that codes for a DNA mismatch repair (MMR) protein, MSH2, which forms a heterodimer with MSH6 to make the human MutSα mismatch repair complex. It also dimerizes with MSH3 to form the MutSβ DNA repair complex. MSH2 is involved in many different forms of DNA repair, including transcription-coupled repair, homologous recombination, and base excision repair.

<span class="mw-page-title-main">MLH1</span> Protein-coding gene in the species Homo sapiens

DNA mismatch repair protein Mlh1 or MutL protein homolog 1 is a protein that in humans is encoded by the MLH1 gene located on chromosome 3. It is a gene commonly associated with hereditary nonpolyposis colorectal cancer. Orthologs of human MLH1 have also been studied in other organisms including mouse and the budding yeast Saccharomyces cerevisiae.

<span class="mw-page-title-main">MSH6</span> Protein-coding gene in the species Homo sapiens

MSH6 or mutS homolog 6 is a gene that codes for DNA mismatch repair protein Msh6 in the budding yeast Saccharomyces cerevisiae. It is the homologue of the human "G/T binding protein," (GTBP) also called p160 or hMSH6. The MSH6 protein is a member of the Mutator S (MutS) family of proteins that are involved in DNA damage repair.

<span class="mw-page-title-main">PMS2</span> Protein-coding gene in the species Homo sapiens

Mismatch repair endonuclease PMS2 is an enzyme that in humans is encoded by the PMS2 gene.

<span class="mw-page-title-main">MSH3</span> Protein-coding gene in the species Homo sapiens

DNA mismatch repair protein, MutS Homolog 3 (MSH3) is a human homologue of the bacterial mismatch repair protein MutS that participates in the mismatch repair (MMR) system. MSH3 typically forms the heterodimer MutSβ with MSH2 in order to correct long insertion/deletion loops and base-base mispairs in microsatellites during DNA synthesis. Deficient capacity for MMR is found in approximately 15% of colorectal cancers, and somatic mutations in the MSH3 gene can be found in nearly 50% of MMR-deficient colorectal cancers.

<span class="mw-page-title-main">NEIL1</span> Protein-coding gene in the species Homo sapiens

Endonuclease VIII-like 1 is an enzyme that in humans is encoded by the NEIL1 gene.

<span class="mw-page-title-main">PMS1</span> Protein-coding gene in humans

PMS1 protein homolog 1 is a protein that in humans is encoded by the PMS1 gene.

<span class="mw-page-title-main">MLH3</span> Protein-coding gene in the species Homo sapiens

DNA mismatch repair protein Mlh3 is a protein that in humans is encoded by the MLH3 gene.

<span class="mw-page-title-main">Cancer epigenetics</span> Field of study in cancer research

Cancer epigenetics is the study of epigenetic modifications to the DNA of cancer cells that do not involve a change in the nucleotide sequence, but instead involve a change in the way the genetic code is expressed. Epigenetic mechanisms are necessary to maintain normal sequences of tissue specific gene expression and are crucial for normal development. They may be just as important, if not even more important, than genetic mutations in a cell's transformation to cancer. The disturbance of epigenetic processes in cancers, can lead to a loss of expression of genes that occurs about 10 times more frequently by transcription silencing than by mutations. As Vogelstein et al. points out, in a colorectal cancer there are usually about 3 to 6 driver mutations and 33 to 66 hitchhiker or passenger mutations. However, in colon tumors compared to adjacent normal-appearing colonic mucosa, there are about 600 to 800 heavily methylated CpG islands in the promoters of genes in the tumors while these CpG islands are not methylated in the adjacent mucosa. Manipulation of epigenetic alterations holds great promise for cancer prevention, detection, and therapy. In different types of cancer, a variety of epigenetic mechanisms can be perturbed, such as the silencing of tumor suppressor genes and activation of oncogenes by altered CpG island methylation patterns, histone modifications, and dysregulation of DNA binding proteins. There are several medications which have epigenetic impact, that are now used in a number of these diseases.

DNA methylation in cancer plays a variety of roles, helping to change the healthy cells by regulation of gene expression to a cancer cells or a diseased cells disease pattern. One of the most widely studied DNA methylation dysregulation is the promoter hypermethylation where the CPGs islands in the promoter regions are methylated contributing or causing genes to be silenced.

Mutational signatures are characteristic combinations of mutation types arising from specific mutagenesis processes such as DNA replication infidelity, exogenous and endogenous genotoxin exposures, defective DNA repair pathways, and DNA enzymatic editing.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000129071 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030322 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hendrich B, Bird A (Nov 1998). "Identification and Characterization of a Family of Mammalian Methyl-CpG Binding Proteins". Mol Cell Biol. 18 (11): 6538–47. doi:10.1128/mcb.18.11.6538. PMC   109239 . PMID   9774669.
  6. 1 2 3 Bellacosa A, Cicchillitti L, Schepis F, Riccio A, Yeung AT, Matsumoto Y, Golemis EA, Genuardi M, Neri G (May 1999). "MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1". Proc Natl Acad Sci U S A. 96 (7): 3969–74. Bibcode:1999PNAS...96.3969B. doi: 10.1073/pnas.96.7.3969 . PMC   22404 . PMID   10097147.
  7. 1 2 "Entrez Gene: MBD4 methyl-CpG binding domain protein 4".
  8. 1 2 3 Bellacosa A, Drohat AC (Aug 2015). "Role of base excision repair in maintaining the genetic and epigenetic integrity of CpG sites". DNA Repair. 32: 33–42. doi:10.1016/j.dnarep.2015.04.011. PMC   4903958 . PMID   26021671.
  9. Meng H, Harrison DJ, Meehan RR (Mar 2015). "MBD4 interacts with and recruits USP7 to heterochromatic foci". Journal of Cellular Biochemistry. 116 (3): 476–85. doi:10.1002/jcb.25001. PMC   4964934 . PMID   25358258.
  10. 1 2 3 4 Sjolund AB, Senejani AG, Sweasy JB (2013). "MBD4 and TDG: multifaceted DNA glycosylases with ever expanding biological roles". Mutation Research. 743–744: 12–25. doi:10.1016/j.mrfmmm.2012.11.001. PMC   3661743 . PMID   23195996.
  11. 1 2 3 4 Tricarico R, Cortellino S, Riccio A, Jagmohan-Changur S, Van der Klift H, Wijnen J, Turner D, Ventura A, Rovella V, Percesepe A, Lucci-Cordisco E, Radice P, Bertario L, Pedroni M, Ponz de Leon M, Mancuso P, Devarajan K, Cai KQ, Klein-Szanto AJ, Neri G, Møller P, Viel A, Genuardi M, Fodde R, Bellacosa A (Oct 2015). "Involvement of MBD4 inactivation in mismatch repair-deficient tumorigenesis" (PDF). Oncotarget. 6 (40): 42892–904. doi:10.18632/oncotarget.5740. PMC   4767479 . PMID   26503472.
  12. Cooper DN, Youssoufian H (Feb 1988). "The CpG dinucleotide and human genetic disease". Human Genetics. 78 (2): 151–5. doi:10.1007/bf00278187. PMID   3338800. S2CID   41948691.
  13. Sanders MA, Chew E, et al. (Jul 2018). "MBD4 guards against methylation damage and germline deficiency predisposes to clonal hematopoiesis and early-onset AML". Blood. 132 (14): 1526–1534. bioRxiv   10.1101/180588 . doi:10.1182/blood-2018-05-852566. PMC   6172562 . PMID   30049810.
  14. Waszak SM, Tiao G, Zhu B, Rausch T, et al. (Nov 2017). "Germline determinants of the somatic mutation landscape in 2,642 cancer genomes". bioRxiv   10.1101/208330 .
  15. 1 2 Rodrigues M, Mobuchon L, Houy A, Fiévet A, Gardrat S, Barnhill RL, Popova T, Servois V, Rampanou A, Mouton A, Dayot S, Raynal V, Galut M, Putterman M, Tick S, Cassoux N, Roman-Roman S, Bidard FC, Lantz O, Mariani P, Piperno-Neumann S, Stern MH (May 2018). "Outlier response to anti-PD1 in uveal melanoma reveals germline MBD4 mutations in hypermutated tumors". Nature Communications. 9 (1): 1866. Bibcode:2018NatCo...9.1866R. doi:10.1038/s41467-018-04322-5. PMC   5951831 . PMID   29760383.
  16. Derrien AC, Rodrigues M, Eeckhoutte A, Dayot S, Houy A, Mobuchon L, Gardrat S, Lequin D, Ballet S, Pierron G, Alsafadi S, Mariani O, El-Marjou A, Matet A, Colas C, Cassoux N, Stern MH (April 2020). "Germline MBD4 mutations and predisposition to uveal melanoma". Journal of the National Cancer Institute. 112 (1): 80–87. doi: 10.1093/jnci/djaa047 . PMC   7781447 . PMID   32239153.
  17. Cortellino S, Turner D, Masciullo V, Schepis F, Albino D, Daniel R, Skalka AM, Meropol NJ, Alberti C, Larue L, Bellacosa A (Dec 2003). "The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity". Proceedings of the National Academy of Sciences of the United States of America. 100 (25): 15071–6. doi: 10.1073/pnas.2334585100 . PMC   299910 . PMID   14614141.
  18. Howard JH, Frolov A, Tzeng CW, Stewart A, Midzak A, Majmundar A, Godwin A, Heslin M, Bellacosa A, Arnoletti JP (Jan 2009). "Epigenetic downregulation of the DNA repair gene MED1/MBD4 in colorectal and ovarian cancer". Cancer Biology & Therapy. 8 (1): 94–100. doi:10.4161/cbt.8.1.7469. PMC   2683899 . PMID   19127118.
  19. Screaton RA, Kiessling S, Sansom OJ, Millar CB, Maddison K, Bird A, Clarke AR, Frisch SM (Apr 2003). "Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: A potential link between genome surveillance and apoptosis". Proc. Natl. Acad. Sci. U.S.A. 100 (9): 5211–6. Bibcode:2003PNAS..100.5211S. doi: 10.1073/pnas.0431215100 . PMC   154324 . PMID   12702765.

Further reading