Macropis nuda | |
---|---|
Female | |
Male | |
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Hymenoptera |
Family: | Melittidae |
Genus: | Macropis |
Species: | M. nuda |
Binomial name | |
Macropis nuda (Provancher, 1882) | |
Range of M. nuda |
Macropis nuda is a ground nesting, univoltine bee native to northern parts of North America. Thus, this species cocoons as pupae and hibernates over the winter. The species is unusual as it is an oligolectic bee, foraging exclusively for floral oils and pollen from Primulaceae of the species Lysimachia ciliata . [1]
Macropis nuda is a member of the family Melittidae and the order Hymenoptera. All species of the genus Macropis are oligolectic, as females forage for loosestrife plant oil to line their nests and provision to their eggs. Macropis bees are commonly referred to as oil-bees, as they are the main pollinators of oil-plants such as plants of the genus Lysimachia . [1]
Both males and females of M. nuda are roughly 7-7.5mm in length.
The head, thorax, and abdomen of M. nuda females are a dark black. Females have dense white scopa on their posterior tibiae that are foraging adaptations used for collecting and carrying floral oils and pollen. [1] These scopae are distinct from other bees as they use capillary action to hold floral oils. [2]
Similar to females, the head, thorax and abdomen of M. nuda males are dark black. Males are differentiated by having much less scopa, or hair, on their posterior tibiae. Males are characterized by yellow markings on their heads, the broad plate on the front of the head being completely yellow. [1]
M. nuda is native to northern North America. As it is an oligolectic bee, it is found only where plants of the species Lysimachia ciliata grow, and only in the northern portion of the range of its host plant. M. nuda has historically been found from Saskatchewan, Idaho, and Utah east to Newfoundland and New Jersey, though evidence suggests its range may be shrinking due to climate change. [3]
M. nuda females are solitary and build their nests in the ground each season, but may reuse old nests. Nests are inhabited by a single female and no males. [4]
M. nuda females are particular about their nest sites as their nests are in the ground. Females will make their nests in shady areas of drier, sandy-loam textured soil. [5] Nests are typically near the loosestrife flowers from which females collect oil and pollen. Though females are solitary and build their own nests, nests will be found in aggregates due to the criteria of nest site. [2]
M. nuda nests are compact and rather shallow, as the deepest cells are only up to 6.5mm below the surface. [4] Entrances of nests are usually concealed by dried leaves, twigs, rocks, or low-growing plants. Burrows are approximately 3.0-3.5mm in diameter and are coated with a waterproof lining created from the floral oils collected by the female. The lining maintains homeostatic humidity conditions for offspring. Cells are also coated with this waterproof lining to keep them dry while offspring are in their cocoons during the winter. [4]
M. nuda is a solitary bee species. Females make their own nests in the ground, and are univoltine, having only one brood during a mating season as offspring hibernate in the nest until they mature the next season. Males and females spend the winter in cocoons as mature pupae, and recommence development in the spring as the temperature increases. [6] Once emerged, young females will either find a new nesting site or commandeer an old nest. [7]
Larvae rapidly develop into pupae within 10 days, feeding on a provision that is a mixture of floral oil and pollen. [4]
A female M. nuda digs a cell, then lines it with oils from Lysimachia flowers. The female then provisions the cell with a mixture of floral oil and pollen. She then lays a single, white colored egg in the cell before closing it with soil. The larval feeding period lasts approximately 10–14 days, after which they are pupae and begin to spin cocoons. [4]
After the larval feeding period, pupae spin the cocoons in which they will hibernate until the next spring. Cocoons completely occupy the cells, and strongly adhere to the sides of the cell, but not the closure. [4] There is a small hole near the apex of the cocoon, opening to the soil closure of the cell. This allows exchange of oxygen and carbon dioxide as the waxy oil coating the cell and the silk of the cocoon does not allow for gas movement. Not only does the cocoon allow safety from the cold of the winter, it may also serve as a barricade to protect against parasites and predators. [4]
Macropis species are protandrous, as male bees emerge from their cocoons 1–2 weeks before females emerge. [7] Because M. nuda males emerge before females, they also reach sexual maturity earlier. Females reach sexual maturity shortly after they emerge when they begin constructing their nests. [7]
Macropis nuda behavior of males and females in regards to foraging and mating.
Females will feed themselves with nectar of a variety of flowers, but will only use oil and pollen from Lysimachia ciliata plants for provisioning. Females are found around Lysimachia plants in times of full sun and collect oil and pollen simultaneously. [2] Because Lysimachia plants produce fatty oils in the place of nectar, oil-bees like Macropis nuda are the main pollinators of these plants. Little was known about the chemical communication for how Macropis bees find Lysimachia plants until a 2007 study of Lysimachia chemical indicators. [8] Flower-specific chemicals were identified by gas chromatography, then Macropis species were used to test if these flower-specific chemicals were the source of attraction. The identified compounds in Lysimachia plants were found to be strong attractors of Macropis bees, and are seldom found in other plants. [8] The interaction between floral oil secreting plants and oil-collecting bees is one of the most specialized of all pollinating systems. A 2015 study identified diacetin, a volatile acteylated glycerol, as a key volatile used by oil-collecting bees like M. nuda to locate food sources. Diacetin is the first demonstrated private form of communication between plant and pollinator. [9]
Unlike females, male Macropis nuda do not rely on Lysimachia plants. The daily activity of patrolling males begins near nest aggregates, then progresses to nearby flowers where both males and females feed themselves on a variety of nectars. [10] Males only collect nectar, but will travel to Lysimachia plants for mating opportunities where females collect floral oils. Males attempt to mate by directly pouncing on females, regardless of whether the female is carrying pollen or oil. [2] Males are not allowed into a female's nest, and rest on flowers while females will sleep in their nests. [4]
Macropis nuda does not have any clear mating rituals. There has been no observed scent marking, [2] and males and females do not produce any kind of sound to attract one another like other solitary bees such as Meganomia . [11] Mating appears to be quick and random, where males patrol Lysimachia plants and pounce on females. Females reject males that pounce for mating by swiftly kicking with their hind legs. [2] If receptive, a pair will hold together and fall from a flower, dislodging in the air or landing on the ground. The act is quick and takes around 1–2 seconds to complete. Copulation has only been observed near the Lysimachia plants, never near nest sites.
M. nuda is parasitized by Epeoloides pilosulus , commonly referred to as a "Macropis cuckoo bee". [12] The common name of this cleptoparasite refers to how this species of bee invades a host nest and lays its eggs in a host cell. Macropis cuckoo bee larvae make cocoons and hibernate similarly to M. nuda. The parasitic bee larvae will consume provisions stored for the M. nuda larva. The parasitic bee is most active during the hottest hours of the day. On warm days, M. nuda females will guard the entrances to their nests, impeding the cuckoo bees' mode of parasitism. [12]
Megachile rotundata, the alfalfa leafcutting bee, is a European bee that has been introduced to various regions around the world. As a solitary bee species, it does not build colonies or store honey, but is a very efficient pollinator of alfalfa, carrots, other vegetables, and some fruits. Because of this, farmers often use M. rotundata as a pollination aid by distributing M. rotundata prepupae around their crops. Each female constructs and provisions her own nest, which is built in old trees or log tunnels. Being a leafcutter bee, these nests are lined with cut leaves. These bees feed on pollen and nectar and display sexual dimorphism. This species has been known to bite and sting, but it poses no overall danger unless it is threatened or harmed, and its sting has been described as half as painful as a honey bee's.
Lysimachia is a genus consisting of 193 accepted species of flowering plants traditionally classified in the family Primulaceae. Based on a molecular phylogenetic study it was transferred to the family Myrsinaceae, before this family was later merged into the Primulaceae.
Mason bee is a name now commonly used for species of bees in the genus Osmia, of the family Megachilidae. Mason bees are named for their habit of using mud or other "masonry" products in constructing their nests, which are made in naturally occurring gaps such as between cracks in stones or other small dark cavities. When available, some species preferentially use hollow stems or holes in wood made by wood-boring insects.
Xylocopa virginica, sometimes referred to as the eastern carpenter bee, extends through the eastern United States and into Canada. They are sympatric with Xylocopa micans in much of southeastern United States. They nest in various types of wood and eat pollen and nectar. In X. virginica, dominant females do not focus solely on egg-laying, as in other bee species considered to have "queens". Instead, dominant X. virginica females are responsible for a full gamut of activities including reproduction, foraging, and nest construction, whereas subordinate bees may engage in little activity outside of guarding the nest.
With over 850 species, the genus Nomada is one of the largest genera in the family Apidae, and the largest genus of cuckoo bees. Cuckoo bees are so named because they enter the nests of a host and lay eggs there, stealing resources that the host has already collected. The name "Nomada" is derived from the Greek word nomas, meaning "roaming" or "wandering."
Mass provisioning is a form of parental investment in which an adult insect, most commonly a hymenopteran such as a bee or wasp, stocks all the food for each of her offspring in a small chamber before she lays the egg. This behavior is common in both solitary and eusocial bees, though essentially absent in eusocial wasps.
Lysimachia ciliata, the fringed loosestrife, is a species of flowering plant in the family Primulaceae. It is an erect herbaceous perennial growing to 120 cm (47 in) tall and 60 cm (24 in) broad, with opposite, simple leaves, and smooth green stems. The star-shaped yellow flowers are borne in midsummer. It is native to North America, including most of southern Canada and most of the United States except for the southwest. This plant is notable in that it is one of the few species of Lysimachia to bear elaiophores, that is, to offer oil instead of nectar as a reward to pollinators. It is pollinated in the northern part of its range by the specialist oil bee Macropis nuda, a native bee species whose survival depends upon this host plant.
Osmia bicornis is a species of mason bee, and is known as the red mason bee due to its covering of dense gingery hair. It is a solitary bee that nests in holes or stems and is polylectic, meaning it forages pollen from various different flowering plants. These bees can be seen aggregating together and nests in preexisting hollows, choosing not to excavate their own. These bees are not aggressive; they will only sting if handled very roughly and are safe to be closely observed by children. Females only mate once, usually with closely related males. Further, females can determine the sex ratio of their offspring based on their body size, where larger females will invest more in diploid females eggs than small bees. These bees also have trichromatic colour vision and are important pollinators in agriculture.
Macropis is a genus of bees in the family Melittidae.
The California carpenter bee, Xylocopa californica, is a species of carpenter bee in the order Hymenoptera, and it is native to western North America.
Bombus fervidus, the golden northern bumble bee or yellow bumblebee, is a species of bumblebee native to North America. It has a yellow-colored abdomen and thorax. Its range includes the North American continent, excluding much of the southern United States, Alaska, and the northern parts of Canada. It is common in cities and farmland, with populations concentrated in the Northeastern part of the United States. It is similar in color and range to its sibling species, Bombus californicus, though sometimes also confused with the American bumblebee or black and gold bumblebee. It has complex behavioral traits, which includes a coordinated nest defense to ward off predators. B. fervidus is an important pollinator, so recent population decline is a particular concern.
The Tapinotaspidini are a tribe of apid bees. They belong to the order Hymenoptera and the family Apidae. The Tapinotaspidini tribe consists of 180 different species. Many species of Apidae are recognised as oil-collecting bees and Tapinotaspidini possess this oil-collecting behaviour. Morphological and molecular phylogenies have found that the trait of oil-collecting is polyphyletic. Tapinotaspidini are solitary bees which collect oil sources from flowers belonging to the families of Malpighiaceae, Solanaceae, Orchidaceae, Calceolariaceae, Iridaceae, Plantaginaceae, Melastomataceae and Krameriaceae. Tapinotaspidini species differ in terms of being generalist and specialist oil-collectors. Selected species exclusively obtain floral oil from one family of flowering plants whilst many Tapinotaspidini species employ a range of plant families to fulfil their oil-collecting behaviour.
Eucera is a genus of bees in the family Apidae, which comprises more than 100 species. These bees are commonly known as long-horned bees due to their characteristically long antennae, especially in males. Eucera species can be found in diverse habitats, including meadows, fields, and urban gardens, primarily in the Palearctic and Nearctic regions, covering parts of Europe, Asia, North Africa, and North America.
Eulaema meriana is a large-bodied bee species in the tribe Euglossini, otherwise known as the orchid bees. The species is a solitary bee and is native to tropical Central and South America. The male collects fragrances from orchid flowers, which it stores in hollows in its hind legs. Orchids can be deceptive by mimicking the form of a female and her sex pheromone, thus luring male bees or wasps. Pollination will take place as the males attempt to mate with the labellum, or the tip petal of the flower. Male E. meriana are territorial and have a particular perch on a tree trunk where it displays to attract a female. After mating, the female builds a nest with urn-shaped cells made with mud, feces, and plant resin, and provisions these with nectar and pollen before laying an egg in each. These bees also have complex foraging and wing buzzing behaviors and are part of a mimicry complex.
Scaptotrigona postica is a species of stingless bee that lives mainly in Brazil. It is a eusocial bee in the tribe Meliponini. S. postica is one of 25 species in the genus Scaptotrigona and is a critical pollinator of the tropical rain forests of Brazil. They construct their nests in hollowed sections of tree trunks, allowing for effective guarding at the nest entrance. This species shows colony structure similar to most members of the Meliponini tribe with three roles within the colony: queen, worker, and male. S. postica individuals have different forms of communication from cuticular hydrocarbons to pheromones and scent trails. Communication is especially useful during worker foraging for nectar and pollen through the Brazilian tropical rain forests. S. postica is a very important pollinator of the Brazilian tropical rain forests and is widely appreciated for its honey. Stingless bees account for approximately 30% of all pollination of the Brazilian Caatinga and Pantanal ecosystems and up to 90% of the pollination for many species of the Brazilian Atlantic Forest and the Amazon.
Xylocopa pubescens is a species of large carpenter bee. Females form nests by excavation with their mandibles, often in dead or soft wood. X. pubescens is commonly found in areas extending from India to Northeast and West Africa. It must reside in these warm climates because it requires a minimum ambient temperature of 18 °C (64 °F) in order to forage.
Macrotera portalis is a species of communal, ground nesting, partially bivoltine bees found in arid grasslands and desert regions of North America. An oligolectic bee, M. portalis gathers pollen only from plants in the genus Sphaeralcea and has patterns of seasonal emergence to survive the harsh conditions of the desert, with emergence delayed until monsoon rains arrive.
Melittidae is a small bee family, with over 200 described species in three subfamilies. The family has a limited distribution, with all described species restricted to Africa and the northern temperate zone.
Centris analis is a solitary, oil-collecting bee with a geographical range extending from Brazil to Mexico. C. analis is a small, fast-flying bee with an average head width of 3.21mm and 3.54mm for males and females, respectively. While most species of the genus Centris create burrows for nesting, C. analis and other species of the subgenus Heterocentris build nests in pre-existing cavities rather than in the ground. C. analis is a pollinator of many plant species, especially of those in the family Malpighiaceae, which has encouraged its application in acerola orchards.
The genus Chalepogenus, consisting of 21 species of oil-collecting apid bees, demonstrates oligolecty by foraging on oil-producing flowers from the families Calceolariaceae, Iridaceae and Solanaceae. These oil-flowers are abundant in South America, where Chalepogenus is endemic. In contrast to honey bees, Chalepogenus species do not collect nectar; instead, they gather floral oil for various purposes, including provisioning their larvae, constructing nests, and sustaining foraging adult bees. Although oil collection has been reported to be performed by females only, both males and females have specialised oil-collecting structures.