McKinley Climatic Laboratory

Last updated
McKinley Climatic Laboratory
F-117 on ice at McKinley Climatic Laboratory 022808-F-0000P-064.jpg
F-117A, 84-0824, on ice at McKinley Climatic Laboratory in 1991
USA Florida location map.svg
Red pog.svg
Usa edcp location map.svg
Red pog.svg
Nearest city Fort Walton Beach, Florida
Coordinates 30°28′33″N86°30′27″W / 30.47583°N 86.50750°W / 30.47583; -86.50750 Coordinates: 30°28′33″N86°30′27″W / 30.47583°N 86.50750°W / 30.47583; -86.50750
Built1944
Architectural styleLate 19th And Early 20th Century American Movements
NRHP reference No. 97001145 [1]
Added to NRHPOctober 6, 1997

The McKinley Climatic Laboratory is both an active laboratory and a historic site located in Building 440 on Eglin Air Force Base, Florida. The laboratory is part of the 96th Test Wing. In addition to Air Force testing, it can be used by other US government agencies and private industry. [2]

Contents

On October 6, 1997, it was added to the U.S. National Register of Historic Places. [1] The laboratory was named a National Historic Mechanical Engineering Landmark by the American Society of Mechanical Engineers in 1987. [3] [4]

History

In 1940, the US Army Air Force designated Ladd Field in Fairbanks, Alaska as a cold-weather testing facility. Because sufficiently cold weather was not predictable and often of short duration, Ashley McKinley suggested a refrigerated airplane hangar be built. The facilities were constructed at Eglin Field. [4]

The first tests started in May 1947. Airplanes that were tested included the B-29 Superfortress, C-82 Packet, P-47 Thunderbolt, P-51 Mustang, P-80 Shooting Star, and the Sikorsky H-5D helicopter. [4] More recently, it has tested the C-5 Galaxy, [4] the F-117, [5] the F-22, [6] the Boeing 787, [7] and the Airbus A350 XWB. [8]

On 12 June 1971, the hangar was dedicated as the McKinley Climatic Hangar in honor of Col. Ashley McKinley, who suggested the facility and served at Eglin during its construction. [4]

Buildings

The Building 440 is an insulated, refrigerated hangar. There is an office and instrumentation building, a cold-weather engine test cell, the refrigeration system, mechanical-draft cooling towers, and a steam-heating plant. [4]

The main chamber is 252 feet (77 m) wide, 201 feet (61 m) deep, and 70 feet (21 m) tall at the center of the hangar. It was constructed to hold aircraft as large as a B-29, its size also fitting the larger Convair B-36 Peacemaker. In 1968, a 60 feet (18 m) by 85 feet (26 m) extension was added. It now has 55,000 square feet (5,100 m2) working area. This allows it to test aircraft as large as a C-5A. Under hot conditions, it can achieve 165 °F (74 °C). [4] [9]

The All-Weather Room is 42 feet (13 m) by 22 feet (7 m). It has a temperature range from −80 °F (−62 °C) to 170 °F (77 °C). Rainfall can be as high as 15 inches (380 mm) per hour and the wind can be as high as 60 knots (31 m/s). Snow can be made in the chamber. [4]

The Temperature-Altitude Chamber is 13.5 feet (4.1 m) by 9.5 feet (2.9 m) with a height of 6.9 feet (2.1 m). Altitudes up to 80,000 feet (24 km) can be simulated. The temperature range is −80 °F (−62 °C) to 140 °F (60 °C). [4]

The engine test cell was originally used for aircraft engines. It was about 130 feet (40 m) by 30 feet (9 m) with a height of 25 feet (8 m). It is now called the Equipment Test Chamber and is used mainly for tanks, trucks, and other equipment. The original building had small tests rooms for desert, hot, marine, and jungle conditions. These have been eliminated. [2] [4]

The original floor of the building was constructed of reinforced-concrete slabs that were 12 inches (30 cm) thick and 12.5 feet (3.8 m) square. The slabs rested on 13 inches (33 cm) of cellular glass blocks over reinforced concrete. In 1990, much of this floor was replaced with 25 feet (7.6 m) square slabs. The walls and door are insulated with 13 inches (33 cm) of glass-wool board sheathed in galvanized steel. To seal the doors, they are pulled against foam rubber seals. The ceiling insulation is on a corrugated steel deck, which is suspended from the roof trusses by chains. [4] [9]

Refrigeration system

The original coolant was R-12 refrigerant. Liquid refrigerant is held in a low-pressure surge tank. The pressure in this tank is maintained at the saturation pressure for the desired temperature for the cooling coils. Vapor from this tank is compressed to a gage pressure of 20 psi (138 kPa) by the first-stage compressor. The compressed vapor is expanded into an intermediate, desuperheater tank. Liquid condensed in this expansion is drained back to the surge tank. The remaining vapor is compressed in a high-stage compressor to a gage pressure of about 150 psi (1 MPa). Heat is transferred from the hot vapor to cooling water. Any condensed liquid is returned to the intermediate tank, the surge tank, or the supply tank. Liquid refrigerant from the surge tank is pumped through the cooling coils at sufficient pressure to avoid vaporization. Warmed liquid is returned to the surge tank. As its pressure is reduced, a portion of this liquid will flash into vapor. [4]

There are three such refrigeration systems. Each low-stage compressor is powered by a 1,000 horsepower (746 kW) motor and each high-stage compressor is powered by a 1,250 horsepower (932 kW) motor. The system was built by York Corporation. The original motors were Allis-Chalmers induction motors. They have been replaced by variable frequency, synchronous motors manufactured by EMICC that operate between 350 and 1800 rpm. [4] Recent efforts have been made to change from ozone-depleting refrigerants. [9]

For engine tests, there is need for makeup air. The system originally could cool 200 pounds (91 kg) per second of humid air. In 1966, this was increased to 450 pounds (204 kg) per second. Air is also cooled by a two-stage heat exchanger. The first stage uses 110,000 US gallons (416 m3) of 20% calcium chloride brine pre-cooled to 24 °F (−4 °C). The second stage uses 137,500 US gallons (520 m3) of methylene chloride pre-cooled to −97 °F (−72 °C). This can cool 450 pounds (204 kg) per second of humid air from 80 °F (27 °C) to −65 °F (−54 °C) for 40 minutes. [4]

Related Research Articles

Heat pump Device that heats or cools buildings

A heat pump is a device used to warm the interior of a building or heat domestic hot water by transferring thermal energy from a cooler space to a warmer space using the refrigeration cycle, being the opposite direction in which heat transfer would take place without the application of external power. Common device types include air source heat pumps, ground source heat pumps, water source heat pumps and exhaust air heat pumps. Heat pumps are also often used in district heating systems.

Compressor Machine to increase pressure of gas by reducing its volume

A compressor is a mechanical device that increases the pressure of a gas by reducing its volume. An air compressor is a specific type of gas compressor.

For fluid power, a working fluid is a gas or liquid that primarily transfers force, motion, or mechanical energy. In hydraulics, water or hydraulic fluid transfers force between hydraulic components such as hydraulic pumps, hydraulic cylinders, and hydraulic motors that are assembled into hydraulic machinery, hydraulic drive systems, etc. In pneumatics, the working fluid is air or another gas which transfers force between pneumatic components such as compressors, vacuum pumps, pneumatic cylinders, and pneumatic motors. In pneumatic systems, the working gas also stores energy because it is compressible.

Chiller

A chiller is a machine that removes heat from a liquid coolant via a vapor-compression, adsorption refrigeration, or absorption refrigeration cycles. This liquid can then be circulated through a heat exchanger to cool equipment, or another process stream. As a necessary by-product, refrigeration creates waste heat that must be exhausted to ambience, or for greater efficiency, recovered for heating purposes. Vapor compression chillers may use any of a number of different types of compressors. Most common today are the hermetic scroll, semi-hermetic screw, or centrifugal compressors. The condensing side of the chiller can be either air or water cooled. Even when liquid cooled, the chiller is often cooled by an induced or forced draft cooling tower. Absorption and adsorption chillers require a heat source to function.

Active cooling is a heat-reducing mechanism that is typically implemented in electronic devices and indoor buildings to ensure proper heat transfer and circulation from within.

Refrigerator Household or industrial appliance for preserving food at a low temperature

A refrigerator is a commercial and home appliance consisting of a thermally insulated compartment and a heat pump that transfers heat from its inside to its external environment so that its inside is cooled to a temperature below the room temperature. The refrigerator should be kept at or below 40 °F (4 °C) and the freezer should be regulated at 0 °F (-18 °C). Refrigeration is an essential food storage technique around the world. The lower temperature lowers the reproduction rate of bacteria, so the refrigerator reduces the rate of spoilage. A refrigerator maintains a temperature a few degrees above the freezing point of water. Optimum temperature range for perishable food storage is 3 to 5 °C. A similar device that maintains a temperature below the freezing point of water is called a freezer. The refrigerator replaced the icebox, which had been a common household appliance for almost a century and a half.

Ashley Chadbourne McKinley was an accomplished American aerial photographer and colonel in the U.S. Army Air Corps who helped pioneer aviation at subzero temperatures. He accompanied Richard E. Byrd as an aerial photographer on his expedition to the South Pole.

Absorption refrigerator

An absorption refrigerator is a refrigerator that uses a heat source to provide the energy needed to drive the cooling process. The system uses two coolants, the first of which performs evaporative cooling and is then absorbed into the second coolant; heat is needed to reset the two coolants to their initial states. The principle can also be used to air-condition buildings using the waste heat from a gas turbine or water heater. Using waste heat from a gas turbine makes the turbine very efficient because it first produces electricity, then hot water, and finally, air-conditioning—trigeneration. Absorption refrigerators are commonly used in recreational vehicles (RVs), campers, and caravans because the heat required to power them can be provided by a propane fuel burner, by a low-voltage DC electric heater or by a mains-powered electric heater. Unlike more common vapor-compression refrigeration systems, an absorption refrigerator can be produced with no moving parts other than the coolants.

Economizers, or economisers (UK), are mechanical devices intended to reduce energy consumption, or to perform useful function such as preheating a fluid. The term economizer is used for other purposes as well. Boiler, power plant, heating, refrigeration, ventilating, and air conditioning (HVAC) uses are discussed in this article. In simple terms, an economizer is a heat exchanger.

Vapor-compression refrigeration Refrigeration process

Vapour-compression refrigeration or vapor-compression refrigeration system (VCRS), in which the refrigerant undergoes phase changes, is one of the many refrigeration cycles and is the most widely used method for air-conditioning of buildings and automobiles. It is also used in domestic and commercial refrigerators, large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services. Oil refineries, petrochemical and chemical processing plants, and natural gas processing plants are among the many types of industrial plants that often utilize large vapor-compression refrigeration systems. Cascade refrigeration systems may also be implemented using two compressors.

Turboexpander

A turboexpander, also referred to as a turbo-expander or an expansion turbine, is a centrifugal or axial-flow turbine, through which a high-pressure gas is expanded to produce work that is often used to drive a compressor or generator.

Thermal expansion valve component of air conditioning and refrigeration systems

A thermal expansion valve or thermostatic expansion valve is a component in vapor-compression refrigeration and air conditioning systems that controls the amount of refrigerant released into the evaporator and is intended to regulate the superheat of the refrigerant that flows out of the evaporator to a steady value. Although often described as a "thermostatic" valve, an expansion valve isn't able to regulate the evaporator's temperature to a precise value. The evaporator's temperature will only vary with the evaporating pressure, which will have to be regulated through other means.

Heat pump and refrigeration cycle Mathematical models of heat pumps and refrigeration

Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. A heat pump is a mechanical system that allows for the transmission of heat from one location at a lower temperature to another location at a higher temperature. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink, or a "refrigerator" or “cooler” if the objective is to cool the heat source. In either case, the operating principles are close. Heat is moved from a cold place to a warm place.

Condenser (heat transfer) System for condensing gas into liquid by cooling

In systems involving heat transfer, a condenser is a heat exchanger used to condense a gaseous substance into a liquid state through cooling. In so doing, the latent heat is released by the substance and transferred to the surrounding environment. Condensers are used for efficient heat rejection in many industrial systems. Condensers can be made according to numerous designs, and come in many sizes ranging from rather small (hand-held) to very large. For example, a refrigerator uses a condenser to get rid of heat extracted from the interior of the unit to the outside air.

A crankcase heater is an electrical component in a compressor in an air-conditioning system, heat pump system, or chiller system. The crankcase heater is normally on all the time, even when the unit is not running, though temperature sensors and set points may turn it off when not needed. A crankcase heater's sole purpose is to prevent refrigerant migration and mixing with crankcase oil when the unit is off, and to prevent condensation of refrigerant in the crankcase of a compressor. The crankcase heater keeps refrigerant at a temperature higher than the coldest part of the system. A crankcase heater generally has the same electrical symbol as a resistor because it converts electricity directly into heat via electrical resistance. The resistance in the heater coil determines the heat it produces when voltage is applied.

Pumpable ice technology Type of technology to produce and use fluids or secondary refrigerants

Pumpable ice (PI) technology is a technology to produce and use fluids or secondary refrigerants, also called coolants, with the viscosity of water or jelly and the cooling capacity of ice. Pumpable ice is typically a slurry of ice crystals or particles ranging from 5 micrometers to 1 cm in diameter and transported in brine, seawater, food liquid, or gas bubbles of air, ozone, or carbon dioxide.

Eglin Air Force Base, a United States Air Force base located southwest of Valparaiso, Florida, was established in 1935 as the Valparaiso Bombing and Gunnery Base. It is named in honor of Lieutenant Colonel Frederick I. Eglin (1891–1937), who was killed in a crash of his Northrop A-17 pursuit aircraft on a flight from Langley to Maxwell Field, Alabama.

Automobile air conditioning

Automobile air conditioning systems use air conditioning to cool the air in a vehicle.

The Glossary of Geothermal Heating and Cooling provides definitions of many terms used within the Geothermal heat pump industry. The terms in this glossary may be used by industry professionals, for education materials, and by the general public.

Compressed air dryers are special types of filter systems that are specifically designed to remove the water that is inherent in compressed air. The process of compressing air raises its temperature and concentrates atmospheric contaminants, primarily water vapor. Consequently, the compressed air is generally at an elevated temperature and 100% relative humidity. As the compressed air cools, water vapor condenses into the tank(s), pipes, hoses and tools that are downstream from the compressor. Water vapor is removed from compressed air to prevent condensation from occurring and to prevent moisture from interfering in sensitive industrial processes.

References

  1. 1 2 "National Register Information System". National Register of Historic Places . National Park Service. April 15, 2008.
  2. 1 2 "McKinley Climatic Laboratory" (PDF). 46th Test Wing Fact Sheet. US Air Force. Archived from the original (PDF) on 2011-06-16. Retrieved 2009-01-16.
  3. "McKinley Climatic Laboratory". Landmarks. American Society of Mechanical Engineers. Retrieved 2009-01-06.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 "McKinley Climatic Laboratory, Eglin Air Force Base, Florida". McKinley Climatic Laboratory brochure. ASME. Archived from the original (PDF) on 2015-10-23. Retrieved 2009-01-06.
  5. "F-117 on ice at McKinley Climatic Laboratory". Eglin Air Force Base Photos. US Air Force. Archived from the original on 2011-07-17. Retrieved 2009-01-16.
  6. "F-22 endures 3-week, cold-weather test at Eielson". Air Force Link. US Air Force. Archived from the original on 2012-12-12. Retrieved 2009-01-16.
  7. Gates, Dominic (2010-04-22). "Boeing 787 test plane is chilling in Florida". The Seattle Times. Retrieved 2010-04-25.
  8. "A350 XWB successfully completes extreme weather testing at McKinley Climatic Lab". eturbonews. 2014-05-27. Retrieved 2014-05-27.[ permanent dead link ]
  9. 1 2 3 "McKinley Climatic Laboratory". Aviation: From Sand Dunes to Sonic Booms. US National Park Service. Retrieved 2009-01-06.