Melampsora amygdalinae

Last updated

Melampsora amygdalinae
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Basidiomycota
Class: Pucciniomycetes
Order: Pucciniales
Family: Melampsoraceae
Genus: Melampsora
Species:
M. amygdalinae
Binomial name
Melampsora amygdalinae
Klebahn, 1909

Melampsora amygdalinae is a fungal pathogen and part of the division Basidiomycota. It is known as a rust fungus that is host specific. M. amygdalinae commonly infects willows of the genus Salix . This fungus was first discovered in 1909 by Heinrich Klebahn who was a professor of soil biology in Hamburg. Neimi at el. explain how the pathogen occurs throughout the whole distribution of the host, and the small natural populations are an area of interest. This rust fungus is annual (non systemic) and autoecious, which references the fungus spending its entire life in a single host. [1]

Contents

Hosts and symptoms

Willows are a highly susceptible host that this pathogen targets. Fungicides are not usually used for its protection, as the result is not effective. The fungicides needed for this rust fungus would also affect the surrounding environment.  “Several studies reported very low differentiation among samples of fungal pathogens of agricultural crops or forestry trees from different localities across a continent.” [2] To further explain, this shows that this fungus affects its host similarly across the continent. The environment and location of the fungus does not differentiate its functionality. Symptoms that appear on willows are commonly seen as galls. M. amygdalinae distorts the blades and veins of willow, causing irregular spots, bearing the orange yellow uredinia, which is the lesion that forms on the leaf surface. Pustules are what the lesion is referred to as. “The host range and pathogenicity of these species have remained static as no breakdown in host resistance has been observed”. [3] To expand, the host plant has yet to show signs of resistance, only emphasizing the evidence of its susceptibility. This pathogen lacks telia and tends to overwinter in its specific host. The pathogen and the host have the ability to reproduce sexually and are both locally adapted to each other.

Disease cycle

The life cycle of M. amygdalinae is macrocyclic, or has all spore states in its life cycle, which is important to know when trying to perform any disease management. In the spring it undergoes sexual reproduction and the teliospores germinate after overwintering, then produce basidia. The basidia then release basidiospores that travel through the wind to infect the host plant. The host is infected by the haploid basidiospores that form spermagonia.  “After dikaryotization by transfer of spermatia to the receiving structures of compatible mating types, aecia are formed. From these, aecidiospores are dispersed, which, after germination, form uredia on infected host tissue [1] ”. The pustule structure formed on the leaf, asexually produce uredospores, which travel by wind dispersal. “The spread of rust on a willow host takes place during the summer and includes several repeated cycles of clonal propagation of urediniospores. The urediniospores are capable to produce the next generation in 6-7 days”. [4] The life cycle is fast and regenerates quickly, taking over the hosts at a more rapid rate. This is an obligate pathogen, and heavily relies on its host for survival.

Management

With this fungal pathogen being highly host specific, it stays in the environment of its host the willow. Willows are not as shade tolerant as most other plants, so they need an open canopy of tree branches to let a good amount of sunlight in. They also thrive in moist, nutrient rich soils, that are in colder environments. One area of abundance can be found in Europe, in areas of wetter soils. Keeping this pathogen at bay can be a challenge. “Rusts caused by Melampsora spp. are the most severe threat today. Rust attacks influence the development of winter dormancy in the host and indirectly frost hardiness”. [5] The severity of this fungal pathogen makes it hard to control. It can cause additional infections that require separate management. It takes a lot of time and effort to control fungal pathogens, so new methods may have to be performed in the case of new infections developing. Melampsora amygdalinae is only one of many species under the genus Melampsora. Identifying this pathogen directly requires a deeper examination of the proper prevention tasks. Little evidence has been recorded on preventative actions, due to its difficulty to control. Rust fungi such as this are usually damaged by outside factors such as beetles. So, the damage done to the Salix host may be further progressed even with other feeding damage. “The productivity of Salix biomass can be reduced by more than 30-50% dry matter by rust”. [6]

Related Research Articles

<span class="mw-page-title-main">Basidiomycota</span> Division of fungi

Basidiomycota is one of two large divisions that, together with the Ascomycota, constitute the subkingdom Dikarya within the kingdom Fungi. Members are known as basidiomycetes. More specifically, Basidiomycota includes these groups: agarics, puffballs, stinkhorns, bracket fungi, other polypores, jelly fungi, boletes, chanterelles, earth stars, smuts, bunts, rusts, mirror yeasts, and Cryptococcus, the human pathogenic yeast.

<span class="mw-page-title-main">Rust (fungus)</span> Order of fungi

Rusts are fungal plant pathogens of the order Pucciniales causing plant fungal diseases.

<i>Cronartium ribicola</i> Species of rust fungus

Cronartium ribicola is a species of rust fungus in the family Cronartiaceae that causes the disease white pine blister rust. Other names include: Rouille vésiculeuse du pin blanc (French), white pine Blasenrost (German), moho ampolla del pino blanco (Spanish).

<span class="mw-page-title-main">Wheat leaf rust</span> Fungal disease of wheat, most prevalent

Wheat leaf rust is a fungal disease that affects wheat, barley, rye stems, leaves and grains. In temperate zones it is destructive on winter wheat because the pathogen overwinters. Infections can lead up to 20% yield loss. The pathogen is a Puccinia rust fungus. It is the most prevalent of all the wheat rust diseases, occurring in most wheat-growing regions. It causes serious epidemics in North America, Mexico and South America and is a devastating seasonal disease in India. P. triticina is heteroecious, requiring two distinct hosts.

This is a glossary of some of the terms used in phytopathology.

<i>Rhizoctonia solani</i> Species of fungus

Rhizoctonia solani is a species of fungus in the order Cantharellales. Basidiocarps are thin, effused, and web-like, but the fungus is more typically encountered in its anamorphic state, as hyphae and sclerotia. The name Rhizoctonia solani is currently applied to a complex of related species that await further research. In its wide sense, Rhizoctonia solani is a facultative plant pathogen with a wide host range and worldwide distribution. It causes various plant diseases such as root rot, damping off, and wire stem. It can also form mycorrhizal associations with orchids.

<i>Phragmidium violaceum</i> Species of fungus

Phragmidium violaceum is a plant pathogen native to Europe, Africa, and the Middle East. It primarily infects Rubus species.

Puccinia schedonnardii is a basidiomycete fungus that affects cotton. More commonly known as a “rust,” this pathogen typically affects cotton leaves, which can decrease the quality of the boll at time of harvest. As large percentages of cotton in the United States are resistant to various rust varieties, there is little economic importance to this disease. In places where rust is prevalent, however, growers could see up to a 50% reduction in yield due to rust infection.

<i>Urocystis agropyri</i> Species of fungus

Urocystis agropyri is a fungal plant pathogen that causes flag smut on wheat.

<i>Puccinia asparagi</i> Species of fungus

Puccinia asparagi is the causative agent of asparagus rust. It is an autoecious fungus, meaning that all stages of its life cycle – pycniospores, aeciospores, and teliospores – all develop upon the same host plant . Rust diseases are among the most destructive plant diseases, known to cause famine following destruction of grains, vegetables, and legumes. Asparagus rust occurs wherever the plant is grown and attacks asparagus plants during and after the cutting season. Asparagus spears are usually harvested before extensive rust symptoms appear. Symptoms are first noticeable on the growing shoots in early summer as light green, oval lesions, followed by tan blister spots and black, protruding blisters later in the season. The lesions are symptoms of Puccinia asparagi during early spring, mid-summer and later summer to fall, respectively. Severe rust infections stunt or kill young asparagus shoots, causing foliage to fall prematurely, and reduce the ability of the plant to store food reserves. The Puccinia asparagi fungus accomplishes this by rust lowering the amounts of root storage metabolites. The infected plant has reduced plant vigor and yield, often leading to death in severe cases. Most rust diseases have several stages, some of which may occur on different hosts; however, in asparagus rust all the life stages occur on asparagus. Because of this, many observers mistake the different stages of the Puccinia asparagi life cycle as the presence of different diseases. The effects of Puccinia asparagi are present worldwide wherever asparagus is being grown. Asparagus rust is a serious threat to the asparagus industry.

<i>Uromyces viciae-fabae <span style="font-style:normal;">var.</span> viciae-fabae</i> Species of fungus

Uromyces viciae-fabae var. viciae-fabae is a plant pathogen commonly known as faba-bean rust. The rust is distinguished by the typical rust-like marks on the stem and leaves, causing defoliation and loss of photosynthetic surface along with reduction in yield. The disease is fungal and is autoecious meaning it has one plant host. The rust of faba beans is macrocyclic, or contains 5 spores during its life cycle.

<i>Melampsora lini</i> Species of fungus

Melampsora lini is a species of fungus and plant pathogen found in Ireland and commonly known as flax rust.

<i>Melampsora medusae</i> Species of fungus

Melampsora medusae is a fungal pathogen, causing a disease of woody plants. The infected trees' leaves turn yellowish-orange. The disease affects mostly conifers, e.g. the Douglas-fir, western larch, tamarack, ponderosa, and lodgepole pine trees, but also some broadleaves, e.g. trembling aspen and poplars. Coniferous hosts are affected in late spring through early August, and trembling aspens and poplars from early summer to late fall. It is one of only two foliage rusts that occur naturally in British Columbia.

<i>Phakopsora pachyrhizi</i> Species of fungus

Phakopsora pachyrhizi is a plant pathogen. It causes Asian soybean rust.

<i>Puccinia monoica</i> Species of fungus

Puccinia monoica is a parasitic rust fungus of the genus Puccinia that inhibits flowering in its host plant and radically transforms host morphology in order to facilitate its own sexual reproduction.

<i>Puccinia horiana</i> Species of fungus

Puccinia horiana is a species of fungus that causes chrysanthemum white rust, is a disease of plant species of the genus Chrysanthemum.

<i>Austropuccinia</i> Genus of fungi

Austropuccinia is a monotypic genus of rust native to South America with the only species Austropuccinia psidii, commonly known as myrtle rust, guava rust, or ʻōhiʻa rust. It affects plants in the family Myrtaceae. It is a member of the fungal complex called the guava rust group. The spores have a distinctive yellow to orange colour, occasionally encircled by a purple ring. They are found on lesions on new growth including shoots, leaves, buds and fruits. Leaves become twisted and may die. Infections in highly susceptible species may result in the death of the host plant.

Phakopsora euvitis is a rust fungus that causes disease of grape leaves. This rust fungus has been seen in regions including: Eastern Asia, Southern Asia, Southwestern Brazil, the Americas, and northern Australia. It is widely distributed in eastern and southern Asia but was first discovered on grapevines in Darwin, Australia in 2001 and was identified as Asian grapevine leaf rust by July 2007.

<i>Alternaria brassicicola</i> Species of fungus

Alternaria brassicicola is a fungal necrotrophic plant pathogen that causes black spot disease on a wide range of hosts, particularly in the genus of Brassica, including a number of economically important crops such as cabbage, Chinese cabbage, cauliflower, oilseeds, broccoli and canola. Although mainly known as a significant plant pathogen, it also contributes to various respiratory allergic conditions such as asthma and rhinoconjunctivitis. Despite the presence of mating genes, no sexual reproductive stage has been reported for this fungus. In terms of geography, it is most likely to be found in tropical and sub-tropical regions, but also in places with high rain and humidity such as Poland. It has also been found in Taiwan and Israel. Its main mode of propagation is vegetative. The resulting conidia reside in the soil, air and water. These spores are extremely resilient and can overwinter on crop debris and overwintering herbaceous plants.

<i>Puccinia sorghi</i> Common rust of maize/corn fungal disease

Puccinia sorghi, or common rust of maize, is a species of rust fungus that infects corn and species from the plant genus Oxalis.

References

  1. 1 2 Niemi, Lena; Wennström, Anders; Hjältén, Joakim; Waldmann, Patrik; Ericson, Lars (2006). "Spatial variation in resistance and virulence in the host-pathogen system Salix triandra-Melampsora amygdalinae". Journal of Ecology. 94 (5): 915–921. doi: 10.1111/j.1365-2745.2006.01157.x .
  2. Gladieux, P.; Byrnes, E.J.; Aguileta, G.; Fisher, M.; Billmyre, R.B.; Heitman, J.; Giraud, T. (2017). "Epidemiology and Evolution of Fungal Pathogens in Plants and Animals". Genetics and Evolution of Infectious Diseases (PDF). pp. 71–98. doi:10.1016/B978-0-12-799942-5.00004-4. ISBN   9780127999425. S2CID   90316479.
  3. Spiers, A. G. (1998). "Melampsora and Marssonina pathogens of poplars and willows in New Zealand". Forest Pathology. 28 (4): 233–240. doi:10.1111/j.1439-0329.1998.tb01178.x.
  4. Ciszewska-Marciniak, Joanna; Jędryczka, Małgorzata (2012). "Life cycle and genetic diversity of willow rusts (Melampsora spp.) in Europe". Acta Agrobotanica. 64 (1): 3–9. doi: 10.5586/aa.2011.001 .
  5. Samils, B.; McCracken, A.R.; Dawson, W.M.; Gullberg, U. (2003). "Host-specific Genetic Composition of Melampsora larici-epitea Populations on Two Salix viminalis Varieties in a Mixture Trial". European Journal of Plant Pathology. 109 (2): 183–190. doi:10.1023/A:1022545318466. S2CID   25213502.
  6. Hunter, T.; Royle, D. J.; Arnold, G. M. (1996). "Variation in the occurrence of rust (Melampsora spp.) and other diseases and pests, in short-rotation coppice plantations of Salix in the British Isles". Annals of Applied Biology. 129: 1–12. doi:10.1111/j.1744-7348.1996.tb05726.x.