Meloidogyne acronea

Last updated

Meloidogyne acronea
Scientific classification Red Pencil Icon.png
Kingdom: Animalia
Phylum: Nematoda
Class: Secernentea
Order: Tylenchida
Family: Heteroderidae
Genus: Meloidogyne
Species:
M. acronea
Binomial name
Meloidogyne acronea
Coetzee, (1956)
Synonyms

Hypsoperine acronea
Hypsoperine (Hypsoperine) acronea

Contents

Meloidogyne acronea, the African cotton root-knot nematode or African cotton root nematode, is a plant pathogenic nematode affecting pigeonpeas. It is also an invasive species. [1] The roots and surrounding soils of cereals, grasses, and Gossypium spp. provide habitat for this organism. M. acronea was confirmed as a potentially problematic pest of cotton, Gossypium hirsutum cv. Makoka, which was proven through pot experiments. [2]

See also

Related Research Articles

Northern root-knot nematode is a species of vegetable pathogens which produces tiny galls on around 550 crop and weed species. They invade root tissue after birth. Females are able to lay up to 1,000 eggs at a time in a large egg mass. By surviving harsh winters, they can survive in cold climates.

Root-knot nematode Genus of parasitic worms

Root-knot nematodes are plant-parasitic nematodes from the genus Meloidogyne. They exist in soil in areas with hot climates or short winters. About 2000 plants worldwide are susceptible to infection by root-knot nematodes and they cause approximately 5% of global crop loss. Root-knot nematode larvae infect plant roots, causing the development of root-knot galls that drain the plant's photosynthate and nutrients. Infection of young plants may be lethal, while infection of mature plants causes decreased yield.

<i>Meloidogyne incognita</i> Species of roundworm

Meloidogyne incognita, also known as the "southern root-nematode" or "cotton root-knot nematode" is a plant-parasitic roundworm in the family Heteroderidae. This nematode is one of the four most common species worldwide and has numerous hosts. It typically incites large, usually irregular galls on roots as a result of parasitism.

Belonolaimus longicaudatus is a common parasite of grasses and other plant crops and products. It is the most destructive nematode pest of turf grass, and it also attacks a wide range of fruit, vegetable, and fiber crops such as citrus, cotton, ornamentals, and forage. The sting nematode is a migratory ectoparasite of roots. It is well established in many golf courses and presents a problem in turf management. The sting nematode is only present in very sandy soils. It cannot reproduce in heavier or clay soils.

<i>Rotylenchulus reniformis</i> Species of roundworm

Rotylenchulus reniformis, the reniform nematode, is a species of parasitic nematode of plants with a worldwide distribution in the tropical and subtropical regions.

<i>Meloidogyne arenaria</i>

Meloidogyne arenaria is a species of plant pathogenic nematodes. This nematode is also known as the peanut root knot nematode. The word "Meloidogyne" is derived from two Greek words that mean "apple-shaped" and "female". The peanut root knot nematode, M. arenaria is one of the "major" Meloidogyne species because of its worldwide economic importance. M. arenaria is a predominant nematode species in the United States attacking peanut in Alabama, Florida, Georgia, and Texas. The most damaging nematode species for peanut in the USA is M. arenaria race 1 and losses can exceed 50% in severely infested fields. Among the several Meloidogyne species that have been characterized, M. arenaria is the most variable both morphologically and cytologically. In 1949, two races of this nematode had been identified, race 1 which reproduces on peanut and race 2 which cannot do so. However, in a recent study, three races were described. López-Pérez et al (2011) had also studied populations of M. arenaria race 2, which reproduces on tomato plants carrying the Mi gene and race 3, which reproduces on both resistant pepper and tomato.

<i>Meloidogyne javanica</i>

Meloidogyne javanica is a species of plant-pathogenic nematodes. It is one of the tropical root-knot nematodes and a major agricultural pest in many countries. It has many hosts. Meloidogyne javanica reproduces by obligatory mitotic parthenogenesis (apomixis).

<i>Meloidogyne chitwoodi</i>

Meloidogyne chitwoodi is a plant pathogenic root-knot nematode that is a crop pest of potatoes, carrots, and black salsify. Root-knot nematodes such as M. chitwoodi cause the production of root-knot galls when their larvae infect the plant's roots and capture nutrients stored in the roots.

Pratylenchus brachyurus is a plant parasitic nematode.

Meloidogyne brevicauda is a plant-parasitic nematode. It is also called tea root-knot nematode, mature tea nematode or Indian root-knot nematode. It is a member of the root-knot nematodes, which was identified by C. A. Loos in 1953 in Sri Lanka.

Meloidogyne naasi, the barley root-knot nematode or cereal root-knot nematode, is a plant pathogenic nematode, and also an invasive species. The nematode occurs as the primary root-knot pathogen on golf courses and turf in the Northeast United States, although it is unclear as to whether the pathogen is native or introduced. In 2019 it was reported damaging cereal and grass crops in Northern Ireland.

Meloidogyne partityla is a plant pathogenic nematode infecting pecan. One of the first described cases of this nematode where noted in pecan trees in South Africa by Brito et al. (2013). It is thought to have been introduced into South Africa by pecan seedlings that came from the United States. Today, this nematode is seen infecting pecan trees in Arizona, Arkansas, Florida, Georgia, New Mexico, Oklahoma, and Texas. They not only infect pecans, but they also infect the California black walnut, English walnut, shagbark hickory, and laurel oak. The first report in the US, was reported in South Carolina in which it infected laurel oaks but later started infecting neighboring pecan trees in the shared orchards. The health of infested trees continue to decline every year.

Xiphinema americanum, the American dagger nematode, is a species of plant pathogenic nematodes. It is one of many species that belongs to the genus Xiphinema. It was first described by N. A. Cobb in 1913, who found it on both sides of the United States on the roots of grass, corn, and citrus trees. Not only is Xiphinema americanum known to vector plant viruses, but also X. americanum has been referred to as "the most destructive plant parasitic nematode in America", and one of the four major nematode pests in the Southeastern United States.

There are many plant-parasitic species in the root-knot nematode genus (Meloidogyne) that attack coffee such as M. incognita, M. arenaria, M. exigua, M. javanica and M. coffeicola. Study has already shown interspecific variability coffee, in which show how this species can be adapting to new hosts and environments.

<i>Pratylenchus</i> Genus of roundworms

Pratylenchus is a genus of nematodes known commonly as lesion nematodes. They are parasitic on plants and are responsible for root lesion disease on many taxa of host plants in temperate regions around the world. Lesion nematodes are migratory endoparasites that feed and reproduce in the root and move around, unlike the cyst or root-knot nematodes, which may stay in one place. They usually only feed on the cortex of the root. Species are distinguished primarily by the morphology of the stylets.

Meloidogyne enterolobii was originally described from a population collected from the pacara earpod tree in China in 1983. In 2001 it was reported for the first time in the continental USA in Florida. M. enterolobii is now considered one of the most important root-knot nematode species because of its ability of reproducing on root-knot nematode-resistant bell pepper and other economically important crops.

<i>Purpureocillium lilacinum</i> Species of fungus

Purpureocillium lilacinum is a species of filamentous fungus in the family Ophiocordycipitaceae. It has been isolated from a wide range of habitats, including cultivated and uncultivated soils, forests, grassland, deserts, estuarine sediments and sewage sludge, and insects. It has also been found in nematode eggs, and occasionally from females of root-knot and cyst nematodes. In addition, it has frequently been detected in the rhizosphere of many crops. The species can grow at a wide range of temperatures – from 8 to 38 °C for a few isolates, with optimal growth in the range 26 to 30 °C. It also has a wide pH tolerance and can grow on a variety of substrates. P. lilacinum has shown promising results for use as a biocontrol agent to control the growth of destructive root-knot nematodes.

Pasteuria is a genus of mycelial and endospore-forming, nonmotile gram-positive bacteria that are obligate parasites of some nematodes and crustaceans. The genus of Pasteuria was previously classified within the family Alicyclobacillaceae, but has since been moved to the family Pasteuriaceae.

Prof. Waceke Wanjohi is a professor at Kenyatta University who works in plant nematology, research, teaching, networking, and graduate education. Dedicated to boosting Africa's competitiveness in the global arena by improving agricultural output in smallholder farming systems in Sub-Saharan Africa.

References

  1. The roots and surrounding soil of cereals, grasses, and Gossypium spp. provide habitat for this organism. M. acronea was confirmed as a potentially problematic pest of cotton, Gossypium hirsutum cv. Makoka, which was proven through pot experiments.
  2. Page. (1994). The African Cotton-Root Nematode, Meloidogyne-Acronea - Its Pathogenicity and Intra-Generic Infectivity within Gossypium. Fundamental and Applied Nematology, 17(1), 67–73.

Sources