Monilinia fructigena

Last updated

Monilinia fructigena is a plant pathogen in the fungus kingdom causing a fruit rot of apples, pears, plums, peaches and cherries.

Contents

Monilinia fructigena
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Leotiomycetes
Order: Helotiales
Family: Sclerotiniaceae
Genus: Monilinia
Species:
M. fructigena
Binomial name
Monilinia fructigena
Honey, (1945)
Synonyms

Monilia fructigenaSchumach., (1801)
Sclerotinia fructigena(J.Schröt.) Norton, (1905)
Sclerotinia fructigenaAderh., (1905)
Stromatinia fructigena(J.Schröt.) Boud., (1907)

Classification

Three Monilinia species cause brown rot of fruit ( Monilinia laxa, Monilinia fructicola, Monilinia fructigena); Monilinia fructigena is found most commonly to cause brown rot in fruits of the Pome family and Rosaceae family. [1] The genus Monilinia could be viewed as divided into two sections, Disjunctoriae and Junctoriae; M. fructigena belongs to Junctoriae. These ‘sections’ are the resulting attempt to further differentiate Monilinia into two separate classifications based on morphology, the specialization of the pathogens’ hosts, and the biological process of infection. Belonging to the section Junctoriae entails possessing no disjunctor cells in between the mature spores contained in the conidial chains. [2] Differentiation in the laboratory of the three main Monilinia species can be quite difficult. In a report by De Cal and Melgarejo, it was demonstrated that the species can be differentiated through altering the light exposure to a long-wave UV light and dark cycle. Monilinia fructigena and Monilinia fructicola can be recognized from Monilinia laxa in this experiment, as M. laxa possesses a noticeably short distance from the conidia to the first germ tube branch. Furthermore, M. fructigena and M. fructicola can be individually distinguishable through measuring the maximum diametric growth rate of the culture. The maximum growth rate of M. fructigena was just 8 mm/2 days, whilst M. fructicola expanded its diameter by 20 mm after two days. [3] Conidia produced by Monilinia fructigena are noted to be dry spores, and are not discharged, but pulled away on currents of wind. [4] The conidiophores are short and unspecialized, and perform as a means to elevate the spore chains above infected tissues to provide better exposure to air currents. Except for the occasion of a desiccated infected fruit falling to the ground, peduncles and fruits carrying the pathogen are in the perfect place for further dispersal of airborne spores—in a tree, of course. Infection of fruits by M. fructigena can take place during all periods of development, from the fruitlet to the mature fruit.

Hosts and symptoms

When infection occurs during or shortly after pollination, asymptomatic growth of the pathogen allows the fruit to mature normally. However, as the fruit ripens, small circular brown spots begin developing and quickly rotting on the flesh's surface; given plenty of moisture, conidial pustules develop on the infected areas. On mature infected fruits, brown rot spreads quickly throughout the fruit as a brown decay of the flesh. In areas/climates with high relative humidity, conidial tufts appear at the surface of the fruit; when RH is low, the fruit simply desiccates. Fruit rot caused by the brown rot pathogen Monilinia fructigena is a notorious ailment found in Malus domestica —the apple tree—with the fungus occasionally spreading from the infected fruit to the branches, causing cankering. With apple infections, a varying symptom can occur within the fruits, causing what is commonly known as “black apple”. This symptom entails the color of the rot changing from brown to a deep shade of black. The apple skin remains shiny and unbroken, and shrinkage of the actual tissue does not occur until later in development, where it often rots quickly in storage. Fruit rot is commonly found on apples, pears, and plums, but is less often found within peaches, nectarines, or apricots. [5]

Disease cycle

Within the short span of several days, the entire ripe fruit is rotten and rife with conidial tufts and/or vegetative growth of mycelium. When relative humidity surrounding the fruit is low, conidial tufts and mycelium do not develop. After dropping in a mummified form to the ground, the pathogen overwinters, eventually sending up apothecia to produce the wind-carried ascospores that arrive on new plant tissues. Fallen infected tissues that possess sufficient moisture to undergo the sporulation process often provide a source of secondary inoculation. Under the right conditions, mycelial growth takes place, forming a hardened sclerotia sphere-shape around the core or seed of the fruit. As this mycelial/stroma growth is taking place, the outside of the fruit rots away. The resulting germination utilizes a third type of spore called a “microconidia” that acts as a spermatia in sexual reproduction. Roberts and Dunegan postulated that the means of aerial distribution of conidia resulted in widespread transportation to new hosts, while rain performs well as a means of washing the conidia into more favorable conditions. Conidia are not the only primary way Monilinia fructigena has been observed to be propagated in nature. There are numerous insects, such as wasps, beetles, flies, and butterflies that have been recognized as vectors of Monilinia spp. Birds wounding the tree or its fruits have been identified as possible wound-causing agents that allow the fungus to enter the host. [6]

Environment and management

In a study conducted over a period of four years by Holb and Scherm (2007), it was reasonably concluded that the use of integrated management along with inorganic insecticides attributed a lower infection rate (6.4%) than plots using just organic insecticides (20.1%). [7] With Monilinia fructigena, it is important to note that primary infection of the pathogen occurs through wounds; vector control may be a more logical route of attempting to control the fungus. [8] It was also found that certain fungicides, namely pyraclostrobin and boscalid, applied after spring bloom were effective against Monilinia fructigena as a means of combating primary infection. [9] Conidia produced by Monilinia fructigena are also spread by the wind in times of high temperatures and low relative humidity; conidia can also be spread by rain drops. When spores are spread by rain dislodging the conidia, the added water also provides a supply of moisture for germination and mycelial development. [10]

Photographs

Related Research Articles

<i>Botrytis cinerea</i> Species of fungus

Botrytis cinerea is a necrotrophic fungus that affects many plant species, although its most notable hosts may be wine grapes. In viticulture, it is commonly known as "botrytis bunch rot"; in horticulture, it is usually called "grey mould" or "gray mold".

<span class="mw-page-title-main">Texas root rot</span> Pathogenic fungus

Texas root rot is a disease that is fairly common in Mexico and the southwestern United States resulting in sudden wilt and death of affected plants, usually during the warmer months. It is caused by a soil-borne fungus named Phymatotrichopsis omnivora that attacks the roots of susceptible plants. It was first discovered in 1888 by Pammel and later named by Duggar in 1916.

<span class="mw-page-title-main">Black rot (grape disease)</span> Species of fungus

Grape black rot is a fungal disease caused by an ascomycetous fungus, Guignardia bidwellii, that attacks grape vines during hot and humid weather. “Grape black rot originated in eastern North America, but now occurs in portions of Europe, South America, and Asia. It can cause complete crop loss in warm, humid climates, but is virtually unknown in regions with arid summers.” The name comes from the black fringe that borders growing brown patches on the leaves. The disease also attacks other parts of the plant, “all green parts of the vine: the shoots, leaf and fruit stems, tendrils, and fruit. The most damaging effect is to the fruit”.

<i>Venturia inaequalis</i> Species of fungus

Venturia inaequalis is an ascomycete fungus that causes the apple scab disease.

<i>Monilinia fructicola</i> Species of fungus

Monilinia fructicola is a species of fungus in the order Helotiales. A plant pathogen, it is the causal agent of brown rot of stone fruits.

<i>Monilinia laxa</i> Species of fungus

Monilinia laxa is a plant pathogen that is the causal agent of brown rot of stone fruits.

<i>Penicillium expansum</i> Species of fungus

Penicillium expansum is a psychrophilic blue mold that is common throughout the world in soil. It causes Blue Mold of apples, one of the most prevalent and economically damaging post-harvest diseases of apples.

<i>Alternaria solani</i> Species of fungus

Alternaria solani is a fungal pathogen that produces a disease in tomato and potato plants called early blight. The pathogen produces distinctive "bullseye" patterned leaf spots and can also cause stem lesions and fruit rot on tomato and tuber blight on potato. Despite the name "early," foliar symptoms usually occur on older leaves. If uncontrolled, early blight can cause significant yield reductions. Primary methods of controlling this disease include preventing long periods of wetness on leaf surfaces and applying fungicides. Early blight can also be caused by Alternaria tomatophila, which is more virulent on stems and leaves of tomato plants than Alternaria solani.

<i>Mycocentrospora acerina</i> Species of fungus

Mycocentrospora acerina is a deuteromycete fungus that is a plant pathogen.

<i>Colletotrichum lindemuthianum</i> Species of fungus

Colletotrichum lindemuthianum is a fungus which causes anthracnose, or black spot disease, of the common bean plant. It is considered a hemibiotrophic pathogen because it spends part of its infection cycle as a biotroph, living off of the host but not harming it, and the other part as a necrotroph, killing and obtaining nutrients from the host tissues.

Nigrospora sphaerica is an airborne filamentous fungus in the phylum Ascomycota. It is found in soil, air, and plants as a leaf pathogen. It can occur as an endophyte where it produces antiviral and antifungal secondary metabolites. Sporulation of N. sphaerica causes its initial white coloured colonies to rapidly turn black. N. sphaerica is often confused with the closely related species N. oryzae due to their morphological similarities.

<i>Monilinia</i> Genus of fungi

Monilinia is a genus of fungi in the family Sclerotiniaceae.

<i>Monilinia oxycocci</i> Species of fungus

Monilinia oxycocci (Woronin) Honey,, common names cranberry cottonball, cranberry hard rot, tip blight, is a fungal infection of large cranberry and small cranberry. The tips of young flowering shoots wilt before they flower. Fruit that forms on the plant can then be infected by the asexual spores traveling through the plant, causing the berries to harden, turn cottony on the inside, and dry out instead of maturing. The berries are filled with a cotton-like fungus and are generally yellowish with tan stripes or blotches at maturity, making them unmarketable. It results in important economic impacts on many cranberry marshes, particularly in Wisconsin.

<i>Helicobasidium</i> Genus of fungi


Helicobasidium is a genus of fungi in the subdivision Pucciniomycotina. Basidiocarps are corticioid (patch-forming) and are typically violet to purple. Microscopically they have auricularioid basidia. Asexual anamorphs, formerly referred to the genus Thanatophytum, produce sclerotia. Conidia-bearing anamorphs are parasitic on rust fungi and are currently still referred to the genus Tuberculina.

Peach scab, also known as peach freckles, is a disease of stone fruits caused by the fungi Cladosporium carpophilum. The disease is most prevalent in wet and warm areas especially southern part of the U.S. as the fungi require rain and wind for dispersal. The fungus causes scabbing, lesions, and defoliating on twig, fruit, and leaf resulting in downgrade of peach quality or loss of fruits due to rotting in severe cases.

<i>Penicillium digitatum</i> Species of fungus

Penicillium digitatum is a mesophilic fungus found in the soil of citrus-producing areas. It is a major source of post-harvest decay in fruits and is responsible for the widespread post-harvest disease in Citrus fruit known as green rot or green mould. In nature, this necrotrophic wound pathogen grows in filaments and reproduces asexually through the production of conidiophores and conidia. However, P. digitatum can also be cultivated in the laboratory setting. Alongside its pathogenic life cycle, P. digitatum is also involved in other human, animal and plant interactions and is currently being used in the production of immunologically based mycological detection assays for the food industry.

<i>Cladosporium cladosporioides</i> Species of fungus

Cladosporium cladosporioides is a darkly pigmented mold that occurs world-wide on a wide range of materials both outdoors and indoors. It is one of the most common fungi in outdoor air where its spores are important in seasonal allergic disease. While this species rarely causes invasive disease in animals, it is an important agent of plant disease, attacking both the leaves and fruits of many plants. This species produces asexual spores in delicate, branched chains that break apart readily and drift in the air. It is able to grow under low water conditions and at very low temperatures.

<i>Neoscytalidium dimidiatum</i> Species of fungus

Neoscytalidium dimidiatum was first described in 1933 as Hendersonula toruloidea from diseased orchard trees in Egypt. Decades later, it was determined to be a causative agent of human dermatomycosis-like infections and foot infections predominantly in tropical areas; however the fungus is considered to be widespread. A newer name, Scytalidium dimidiatum, was applied to a synanamorph of Nattrassia mangiferae, otherwise known as Neofusicoccum mangiferae. Substantial confusion has arisen in the literature on this fungus resulting from the use of multiple different names including Torula dimidiata, Fusicoccum dimidiatum, Scytalidium dimidiatum, and Hendersonula toruloidea. Additionally, Scytalidium lignicola and Scytalidium lignicolum are often considered earlier names of N. dimidiatum.

<span class="mw-page-title-main">Bitter rot of apple</span> Plant disease

Bitter rot of apple is a fungal disease of apple fruit that is caused by several species in the Colletotrichum acutatum and Colletotrichum gloeosporioides species complexes. It is identified by sunken circular lesions with conical intrusions into the apple flesh that appear V-shaped when the apple is cut in half through the center of the lesion. It is one of the most devastating diseases of apple fruit in regions with warm wet weather.

Lambertella corni-maris is a small ascomycete fungi. It grows in deciduous fruit areas, and causes postharvest Lambertella rot on apple fruits. The species also forms a mycoparasitism relationship with Monilinia fructigena. It is the type species of the genus Lambertella.

References

  1. Kimbrough, James W.; Batra, Lekh R. (March 1992). "World Species of Monilinia (Fungi): Their Ecology, Biosystematics and Control". Mycologia. 84 (2): 268. doi:10.2307/3760263. ISSN   0027-5514. JSTOR   3760263.
  2. Francesco, Alessandra Di; Mari, Marta (2018-02-09). "Monilinia species of fruit decay: a comparison between biological and epidemiological data". Italian Journal of Mycology. 47: 13–23. doi:10.6092/issn.2531-7342/7817. ISSN   2531-7342.
  3. Cal, A. De; Melgarejo, P. (January 1999). "Effects of Long-Wave UV Light on Monilinia Growth and Identification of Species". Plant Disease. 83 (1): 62–65. doi:10.1094/pdis.1999.83.1.62. ISSN   0191-2917. PMID   30845443.
  4. Hirst, J.M. (December 1953). "Changes in atmospheric spore content: Diurnal periodicity and the effects of weather". Transactions of the British Mycological Society. 36 (4): 375–IN8. doi:10.1016/s0007-1536(53)80034-3. ISSN   0007-1536.
  5. Byrde, R.J.W.; Willetts, H.J. (1977), "PREFACE", The Brown Rot Fungi of Fruit, Elsevier, pp. xi, doi:10.1016/b978-0-08-019740-1.50005-8, ISBN   978-0-08-019740-1 , retrieved 2020-11-30
  6. "CAB Direct". www.cabdirect.org. Retrieved 2020-11-30.
  7. Holb, I. J.; Scherm, H. (January 2008). "Quantitative Relationships Between Different Injury Factors and Development of Brown Rot Caused by Monilinia fructigena in Integrated and Organic Apple Orchards". Phytopathology. 98 (1): 79–86. doi:10.1094/phyto-98-1-0079. ISSN   0031-949X. PMID   18943241.
  8. Xu, X.-M.; Robinson, J.D. (April 2000). "Epidemiology of brown rot (Monilinia fructigena) on apple: infection of fruits by conidia". Plant Pathology. 49 (2): 201–206. doi: 10.1046/j.1365-3059.2000.00437.x . ISSN   0032-0862. S2CID   85158855.
  9. Spiegel, J.; Stammler, G. (October 2006). "Baseline sensitivity of Monilinia laxa and M. fructigena to pyraclostrobin and boscalid". Journal of Plant Diseases and Protection. 113 (5): 199–206. doi:10.1007/bf03356181. ISSN   1861-3829. S2CID   82968164.
  10. Jarvis, W.R. (December 1962). "The dispersal of spores of Botrytis cinerea fr. in a raspberry plantation". Transactions of the British Mycological Society. 45 (4): 549–559. doi:10.1016/s0007-1536(62)80015-1. ISSN   0007-1536.