Morera's theorem

Last updated
If the integral along every C is zero, then f is holomorphic on D. Morera's Theorem.png
If the integral along every C is zero, then f is holomorphic on D.

In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic.

Contents

Morera's theorem states that a continuous, complex-valued function f defined on an open set D in the complex plane that satisfies for every closed piecewise C1 curve in D must be holomorphic on D.

The assumption of Morera's theorem is equivalent to f having an antiderivative on D.

The converse of the theorem is not true in general. A holomorphic function need not possess an antiderivative on its domain, unless one imposes additional assumptions. The converse does hold e.g. if the domain is simply connected; this is Cauchy's integral theorem, stating that the line integral of a holomorphic function along a closed curve is zero.

The standard counterexample is the function f(z) = 1/z, which is holomorphic on C  {0}. On any simply connected neighborhood U in C  {0}, 1/z has an antiderivative defined by L(z) = ln(r) + , where z = re. Because of the ambiguity of θ up to the addition of any integer multiple of 2π, any continuous choice of θ on U will suffice to define an antiderivative of 1/z on U. (It is the fact that θ cannot be defined continuously on a simple closed curve containing the origin in its interior that is the root of why 1/z has no antiderivative on its entire domain C  {0}.) And because the derivative of an additive constant is 0, any constant may be added to the antiderivative and the result will still be an antiderivative of 1/z.

In a certain sense, the 1/z counterexample is universal: For every analytic function that has no antiderivative on its domain, the reason for this is that 1/z itself does not have an antiderivative on C  {0}.

Proof

The integrals along two paths from a to b are equal, since their difference is the integral along a closed loop. Morera's Theorem Proof.png
The integrals along two paths from a to b are equal, since their difference is the integral along a closed loop.

There is a relatively elementary proof of the theorem. One constructs an anti-derivative for f explicitly.

Without loss of generality, it can be assumed that D is connected. Fix a point z0 in D, and for any , let be a piecewise C1 curve such that and . Then define the function F to be

To see that the function is well-defined, suppose is another piecewise C1 curve such that and . The curve (i.e. the curve combining with in reverse) is a closed piecewise C1 curve in D. Then,

And it follows that

Then using the continuity of f to estimate difference quotients, we get that F′(z) = f(z). Had we chosen a different z0 in D, F would change by a constant: namely, the result of integrating f along any piecewise regular curve between the new z0 and the old, and this does not change the derivative.

Since f is the derivative of the holomorphic function F, it is holomorphic. The fact that derivatives of holomorphic functions are holomorphic can be proved by using the fact that holomorphic functions are analytic, i.e. can be represented by a convergent power series, and the fact that power series may be differentiated term by term. This completes the proof.

Applications

Morera's theorem is a standard tool in complex analysis. It is used in almost any argument that involves a non-algebraic construction of a holomorphic function.

Uniform limits

For example, suppose that f1, f2, ... is a sequence of holomorphic functions, converging uniformly to a continuous function f on an open disc. By Cauchy's theorem, we know that for every n, along any closed curve C in the disc. Then the uniform convergence implies that for every closed curve C, and therefore by Morera's theorem f must be holomorphic. This fact can be used to show that, for any open set Ω ⊆ C, the set A(Ω) of all bounded, analytic functions u : Ω → C is a Banach space with respect to the supremum norm.

Infinite sums and integrals

Morera's theorem can also be used in conjunction with Fubini's theorem and the Weierstrass M-test to show the analyticity of functions defined by sums or integrals, such as the Riemann zeta function or the Gamma function

Specifically one shows that for a suitable closed curve C, by writing and then using Fubini's theorem to justify changing the order of integration, getting

Then one uses the analyticity of αxα−1 to conclude that and hence the double integral above is 0. Similarly, in the case of the zeta function, the M-test justifies interchanging the integral along the closed curve and the sum.

Weakening of hypotheses

The hypotheses of Morera's theorem can be weakened considerably. In particular, it suffices for the integral to be zero for every closed (solid) triangle T contained in the region D. This in fact characterizes holomorphy, i.e. f is holomorphic on D if and only if the above conditions hold. It also implies the following generalisation of the aforementioned fact about uniform limits of holomorphic functions: if f1, f2, ... is a sequence of holomorphic functions defined on an open set Ω ⊆ C that converges to a function f uniformly on compact subsets of Ω, then f is holomorphic.

See also

Related Research Articles

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is the most common extension of the factorial function to complex numbers. Derived by Daniel Bernoulli, the gamma function is defined for all complex numbers except non-positive integers, and for every positive integer , The gamma function can be defined via a convergent improper integral for complex numbers with positive real part:

<span class="mw-page-title-main">Cauchy's integral theorem</span> Theorem in complex analysis

In mathematics, the Cauchy integral theorem in complex analysis, named after Augustin-Louis Cauchy, is an important statement about line integrals for holomorphic functions in the complex plane. Essentially, it says that if is holomorphic in a simply connected domain Ω, then for any simply closed contour in Ω, that contour integral is zero.

<span class="mw-page-title-main">Cauchy's integral formula</span> Provides integral formulas for all derivatives of a holomorphic function

In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.

<span class="mw-page-title-main">Residue theorem</span> Concept of complex analysis

In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. The residue theorem should not be confused with special cases of the generalized Stokes' theorem; however, the latter can be used as an ingredient of its proof.

<span class="mw-page-title-main">Winding number</span> Number of times a curve wraps around a point in the plane

In mathematics, the winding number or winding index of a closed curve in the plane around a given point is an integer representing the total number of times that the curve travels counterclockwise around the point, i.e., the curve's number of turns. For certain open plane curves, the number of turns may be a non-integer. The winding number depends on the orientation of the curve, and it is negative if the curve travels around the point clockwise.

In mathematics, a modular form is a (complex) analytic function on the upper half-plane, , that satisfies:

In complex analysis, Liouville's theorem, named after Joseph Liouville, states that every bounded entire function must be constant. That is, every holomorphic function for which there exists a positive number such that for all is constant. Equivalently, non-constant holomorphic functions on have unbounded images.

In mathematics, the Riemann–Liouville integral associates with a real function another function Iαf of the same kind for each value of the parameter α > 0. The integral is a manner of generalization of the repeated antiderivative of f in the sense that for positive integer values of α, Iαf is an iterated antiderivative of f of order α. The Riemann–Liouville integral is named for Bernhard Riemann and Joseph Liouville, the latter of whom was the first to consider the possibility of fractional calculus in 1832. The operator agrees with the Euler transform, after Leonhard Euler, when applied to analytic functions. It was generalized to arbitrary dimensions by Marcel Riesz, who introduced the Riesz potential.

In mathematics, infinite-dimensional holomorphy is a branch of functional analysis. It is concerned with generalizations of the concept of holomorphic function to functions defined and taking values in complex Banach spaces, typically of infinite dimension. It is one aspect of nonlinear functional analysis.

In mathematics, the K-function, typically denoted K(z), is a generalization of the hyperfactorial to complex numbers, similar to the generalization of the factorial to the gamma function.

In mathematics, Riemann's differential equation, named after Bernhard Riemann, is a generalization of the hypergeometric differential equation, allowing the regular singular points to occur anywhere on the Riemann sphere, rather than merely at 0, 1, and . The equation is also known as the Papperitz equation.

In mathematics, holomorphic functional calculus is functional calculus with holomorphic functions. That is to say, given a holomorphic function f of a complex argument z and an operator T, the aim is to construct an operator, f(T), which naturally extends the function f from complex argument to operator argument. More precisely, the functional calculus defines a continuous algebra homomorphism from the holomorphic functions on a neighbourhood of the spectrum of T to the bounded operators.

In complex analysis, functional analysis and operator theory, a Bergman space, named after Stefan Bergman, is a function space of holomorphic functions in a domain D of the complex plane that are sufficiently well-behaved at the boundary that they are absolutely integrable. Specifically, for 0 < p < ∞, the Bergman space Ap(D) is the space of all holomorphic functions in D for which the p-norm is finite:

In mathematics, in the area of complex analysis, Nachbin's theorem is a result used to establish bounds on the growth rates for analytic functions. In particular, Nachbin's theorem may be used to give the domain of convergence of the generalized Borel transform, also called Nachbin summation.

<span class="mw-page-title-main">Antiderivative (complex analysis)</span> Concept in complex analysis

In complex analysis, a branch of mathematics, the antiderivative, or primitive, of a complex-valued function g is a function whose complex derivative is g. More precisely, given an open set in the complex plane and a function the antiderivative of is a function that satisfies .

In many-body theory, the term Green's function is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators.

In mathematics, infinite compositions of analytic functions (ICAF) offer alternative formulations of analytic continued fractions, series, products and other infinite expansions, and the theory evolving from such compositions may shed light on the convergence/divergence of these expansions. Some functions can actually be expanded directly as infinite compositions. In addition, it is possible to use ICAF to evaluate solutions of fixed point equations involving infinite expansions. Complex dynamics offers another venue for iteration of systems of functions rather than a single function. For infinite compositions of a single function see Iterated function. For compositions of a finite number of functions, useful in fractal theory, see Iterated function system.

In mathematics, the Abel–Plana formula is a summation formula discovered independently by Niels Henrik Abel and Giovanni Antonio Amedeo Plana. It states that

Tau functions are an important ingredient in the modern mathematical theory of integrable systems, and have numerous applications in a variety of other domains. They were originally introduced by Ryogo Hirota in his direct method approach to soliton equations, based on expressing them in an equivalent bilinear form.

In mathematics, stochastic analysis on manifolds or stochastic differential geometry is the study of stochastic analysis over smooth manifolds. It is therefore a synthesis of stochastic analysis and of differential geometry.

References