Neoscopelus macrolepidotus

Last updated

Neoscopelus macrolepidotus
FMIB 45577 Neoscopelus macrolepidotus.jpeg
Large-scaled lanternfish (Neoscopelus macrolepidotus).jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Order: Myctophiformes
Family: Neoscopelidae
Genus: Neoscopelus
Species:
N. macrolepidotus
Binomial name
Neoscopelus macrolepidotus
Johnson, 1863

Neoscopelus macrolepidotus, also known as a large-scaled lantern fish, is a species of small mesopelagic or bathypelagic fish of the family Neoscopelidae, which contains six species total along three genera. [1] The family Neoscopelidae is one of the two families of the order Myctophiformes. Neoscopelidae can be classified by the presence of an adipose fin. The presence of photophores, or light-producing organs, further classify the species into the genus Neoscopelus. [2] N. macrolepidotus tends to be mesopelagic until the individuals become large adults, which is when they settle down to the bathypelagic zone. [2]

Contents

The species Neoscopelus macrolepidotus is described as having a dark grey ventral surface, a greyish-silver head, pinkish-red fins, and rows of photophores along the ventral portion of the body and along the sides of the tongue. [3] These photophores produce and emit light in the process of bioluminescence. The species generally does not exceed 25 cm in length and is found exclusively in marine environments, along various parts of the Atlantic, Indian and Pacific Oceans on continental shelves. [3]

Range

Neoscopelus macrolepidotus was originally discovered at Madeira, an autonomous region of Portugal, by English naturalist James Yate Johnson in 1863. Madeira is an archipelago, or island chain, located southwest of Portugal's mainland. [1] After this initial species discovery, N. macrolepidotus was documented in various oceans and regions around the world, reaching as far as 51°N latitude. The majority of the species, however, lives in tropical and subtropical regions, not exceeding 45° latitude in the Northern and Southern Hemispheres. [1] The species also lives a majority of its life between depths of 300 and 1100 m, which most directly correlates to the mesopelagic, or intermediate depths of the sea. Since the mesopelagic zone allows some light penetration, one of the biggest limiting factors of the fish population in this zone is predation. This limiting factor is especially present in the daytime, when more light is penetrating the water column and there is generally more visibility.

Adaptations and behavior

Marine organisms in the mesopelagic zone must adapt to the environmental and behavioral constraints present as light is diminished. These constraints force species to use various senses, such as sight and smell, in order to navigate and survive. For instance, Neoscopelus macrolepidetus and other closely related lanternfishes are evolutionarily fit to have greater visual capabilities in the mesopelagic due to the presence of larger eyes. [4] These larger eyes help increase sensitivity to the light reflected through the water column above and the light of other bioluminescent organisms. [4] The presence of a larger mouth with a posteriorly expanded jaw also helps aid in feeding. [3]

The known feeding habits of the Neoscopelus genera are limited, however, a common behavior of micronekton is diel vertical migration. This type of migration includes a daily routine of navigating through the bathypelagic zone during the day and swimming up to the mesopelagic at night. [5] This behavior is an attempt to avoid large-scale predators during the day while having the ability to feed on smaller organisms, such as zooplankton, at night. Since the species Neoscopelus macrolepidotus has rows of small teeth, the feeding capabilities can be expanded to other types of micronekton, such as smaller fishes or crustaceans. [3]

Bioluminescence

As mentioned before, Neoscopelus macrolepidotus contains photophores that allow the emission of light. These bioluminescent structures were first exclusively found on the ventral surface of the body, until a scientific study conducted by Seishi Kuwabara examined photophores found in the tongues of individuals belonging to the species Neoscopelus macrolepidotus and Neoscopelus microchir. [6] Neoscopelus microchir is the second species comprising the genus Neoscopelus. Prior to the experiment, the species Neoscopelus microchir was distinguished from Neoscopelus macrolepidotus by having more photophores and a larger head and pectoral fin. Based on Kuwabara's experiments, there were larger photophores and more of them in the tongues of N. microchir, which allowed for another distinguishing factor from the otherwise extremely similar species. [6] These morphological differences in species are subtle, which can make it difficult to distinguish the difference between the species N. macrolepidotus and N. microchir when working in the field.

In terms of functional use, the photophores on the ventral surface of the fish are most likely used to aid in ventral counter-illumination. This is a form of camouflage that fish use to match the intensity of light in the mesopelagic zone in order to hide their silhouettes from larger predators below. [7] This camouflage can be seen as a necessity for species such as Neoscopelus macrolepidotus, since their ventral surface is darker and therefore their body contrasts more with the downwelling light from above. The use of the photophores found in their tongues is unknown, but could be a possible aid in feeding and species recognition in the dim mesopelagic and the dark bathypelagic. The bioluminescence is done endogenously, meaning that light is produced from their own bodies instead of from symbiotic bacteria in photophores. [7]

Related Research Articles

<span class="mw-page-title-main">Deep-sea fish</span> Fauna found in deep sea areas

Deep-sea fish are fish that live in the darkness below the sunlit surface waters, that is below the epipelagic or photic zone of the sea. The lanternfish is, by far, the most common deep-sea fish. Other deep-sea fishes include the flashlight fish, cookiecutter shark, bristlemouths, anglerfish, viperfish, and some species of eelpout.

<span class="mw-page-title-main">Bioluminescence</span> Emission of light by a living organism

Bioluminescence is the production and emission of light by living organisms. It is a form of chemiluminescence. Bioluminescence occurs widely in marine vertebrates and invertebrates, as well as in some fungi, microorganisms including some bioluminescent bacteria, and terrestrial arthropods such as fireflies. In some animals, the light is bacteriogenic, produced by symbiotic bacteria such as those from the genus Vibrio; in others, it is autogenic, produced by the animals themselves.

<span class="mw-page-title-main">Myctophiformes</span> Order of fishes

The Myctophiformes are an order of ray-finned fishes consisting of two families of deep-sea marine fish, most notably the highly abundant lanternfishes (Myctophidae). The blackchins (Neoscopelidae) contain six species in three genera, while the bulk of the family belongs to the Myctophidae, with over 30 genera and some 252 species.

The mesopelagiczone, also known as the middle pelagic or twilight zone, is the part of the pelagic zone that lies between the photic epipelagic and the aphotic bathypelagic zones. It is defined by light, and begins at the depth where only 1% of incident light reaches and ends where there is no light; the depths of this zone are between approximately 200 to 1,000 meters below the ocean surface.

<span class="mw-page-title-main">Lanternfish</span> Family of fishes

Lanternfish are small mesopelagic fish of the large family Myctophidae. One of two families in the order Myctophiformes, the Myctophidae are represented by 246 species in 33 genera, and are found in oceans worldwide. Lanternfishes are aptly named after their conspicuous use of bioluminescence. Their sister family, the Neoscopelidae, are much fewer in number but superficially very similar; at least one neoscopelid shares the common name "lanternfish": the large-scaled lantern fish, Neoscopelus macrolepidotus.

<span class="mw-page-title-main">Pelagic fish</span> Fish in the pelagic zone of ocean waters

Pelagic fish live in the pelagic zone of ocean or lake waters—being neither close to the bottom nor near the shore—in contrast with demersal fish that live on or near the bottom, and reef fish that are associated with coral reefs.

<span class="mw-page-title-main">Viperfish</span> Genus of fishes

A viperfish is any species of marine fish in the genus Chauliodus. Viperfishes are mostly found in the mesopelagic zone and are characterized by long, needle-like teeth and hinged lower jaws. A typical viperfish grows to lengths of 30 cm (12 in). Viperfishes undergo diel vertical migration and are found all around the world in tropical and temperate oceans. Viperfishes are capable of bioluminescence and possess photophores along the ventral side of their body, likely used to camouflage them by blending in with the less than 1% of light that reaches to below 200 meters depth.

<span class="mw-page-title-main">Stomiidae</span> Family of fishes

Stomiidae is a family of deep-sea ray-finned fish, including the barbeled dragonfishes. They are quite small, usually around 15 cm, up to 26 cm. These fish are apex predators and have enormous jaws filled with fang-like teeth. They are also able to hinge the neurocranium and upper-jaw system, which leads to the opening of the jaw to more than 100 degrees. This ability allows them to consume extremely large prey, often 50% greater than their standard length.

<span class="mw-page-title-main">Stoplight loosejaw</span> Genus of fishes

The stoplight loosejaws are small, deep-sea dragonfishes of the genus Malacosteus, classified either within the subfamily Malacosteinae of the family Stomiidae, or in the separate family Malacosteidae. They are found worldwide, outside of the Arctic and Subantarctic, in the mesopelagic zone below a depth of 500 meters. This genus once contained three nominal species: M. niger, M. choristodactylus, and M. danae, with the validity of the latter two species being challenged by different authors at various times. In 2007, Kenaley examined over 450 stoplight loosejaw specimens and revised the genus to contain two species, M. niger and the new M. australis.

<i>Malacosteus niger</i> Species of fish

Malacosteus niger, commonly known as the black dragon fish, is a species of deep-sea fish. Some additional common names for this species include: northern stoplight loosejaw, lightless loosejaw, black loosejaw, and black hinged-head. It belongs to the family Stomiidae, or dragonfishes. It is among the top predators of the open mesopelagic zone. M. niger is a circumglobal species, which means that it inhabits waters ranging from the tropics to the subarctics. Not many studies have been conducted on its feeding habits, but recent research suggests that M. niger primarily feed on calanoid copepods which is a form of zooplankton. Indeed, it appears that M. niger primarily prey on zooplankton despite its apparent morphological adaptations for the consumption of relatively large prey. Another unique adaptation for this species is its ability to produce both red and blue bioluminescence. Most mesopelagic species aren't capable of producing red bioluminescence. This is advantageous because most other species cannot perceive red light, therefore allowing M. niger to camouflage part of itself to its prey and predators.

<span class="mw-page-title-main">Sloane's viperfish</span> Species of fish

Sloane's viperfish, Chauliodus sloani, is a predatory mesopelagic dragonfish found in waters across the world. The species was first described by German scientists Marcus Elieser Bloch and Johann Gottlob Schneider in their 1801 book Systema ichthyologiae: iconibus CX illustratum, volume 1. Female C. sloani reach maturity between 133 and 191 mm, while males likely reach maturity at slightly smaller body lengths. It has two rows of photophores along its ventral side. It is believed that C. sloani can adjust the intensity of bioluminescence of the ventral photophores to camouflage itself from predators that might see its shadow from below.

<span class="mw-page-title-main">Firefly squid</span> Species of cephalopod also known as the sparkling enope squid

The firefly squid, also commonly known as the sparkling enope squid or hotaru-ika in Japan, is a species of squid in the family Enoploteuthidae. W. scintillans is the sole species in the monotypic genus Watasenia.

<span class="mw-page-title-main">Fringefin lanternshark</span> Species of shark

The fringefin lanternshark is a shark of the family Etmopteridae found in the western central Atlantic from Texas to Florida, northern Gulf of Mexico, and Mexico. It is endemic to this area. It is a deep water shark and is found about 220 to 915 meters below the surface, on the upper continental slopes of the Gulf. E. schultzi is a small shark, about 27–30 cm long and feeds on squid. It is also bioluminescent, which counter-illuminates it and helps with intraspecific interaction. Due to its limited range and the difficulty of collecting deep water species, it has not been evaluated by the IUCN Red List, but due to recent oil spills in the Gulf of Mexico, it is likely that fringefin lanternsharks have decreased in population.

<span class="mw-page-title-main">Splendid lanternshark</span> Species of shark

The splendid lanternshark is a shark of the family Etmopteridae found in the western Pacific at depths between 120 and 210 m. Through the classification of Etmopterus species into several clades based on the positioning of their bioluminescent photophores, the splendid lanternshark can be considered a member of the Etmopterus pusillus clade.

<i>Cyclothone</i> Genus of fishes

Cyclothone is a genus containing 13 extant species of bioluminescent fish, commonly known as 'bristlemouths' or 'bristlefishes' due to their shared characteristic of sharp, bristle-like teeth. These fishes typically grow to around 1-3 inches, though some can be larger. They are most commonly found in the mesopelagic zone of the ocean, mostly at depths of over 300 meters, and many species have bioluminescence.

<span class="mw-page-title-main">Counter-illumination</span> Active camouflage using light matched to the background

Counter-illumination is a method of active camouflage seen in marine animals such as firefly squid and midshipman fish, and in military prototypes, producing light to match their backgrounds in both brightness and wavelength.

<i>Histioteuthis heteropsis</i> Species of squid

Histioteuthis heteropsis, also known as the strawberry squid, is a species of small cock-eyed squid. The scientific nomenclature of these squid stems from their set of differently sized eyes, one being small and blue and the other being large and yellow. It is thought that the large eye is used to see objects against dim light, while the smaller eye is more able to view bioluminescent light sources. The squid's vernacular name arose due to its rich red skin pigmentation and the presence of photophores along its body, making it appear like a strawberry with seeds.

Caecosagitta macrocephala is a deep sea marine chaetognath that is distributed in meso- and bathypelagic layers. It has a very wide distribution that ranges from the Subantarctic to Subarctic Ocean. Cecosagitta macrocephalas have large heads, hence their name “macro-cephala”. Within their eyes are photoreceptive regions that allow them to catch weak light at bathypelagic depths. Along with their eyes, their gut or intestine has orange pigmentation and a luminous organ that gleams due to bioluminescence unlike some other species of Sagittidae. To be more precise, the luminescent organ is located on the ventral edge of each anterior lateral fin. It is the only member of the genus Caecosagitta, and only one of the two known species of bioluminescent chaetognath, the other being the distantly related Eukrohnia fowleri. C. macrocephala has a secreted bioluminescence that is thought to be coelenterazine based. The luciferase is highly unstable, being unable to survive a single freeze-thaw, and is rapidly inactivated at ice-cold temperatures.

<i>Argyropelecus olfersii</i> Species of fish

Argyropelecus olfersii is a common species of marine hatchetfish, found in mesopelagic waters.

A micronekton is a group of organisms of 2 to 20 cm in size which are able to swim independently of ocean currents. The word 'nekton' is derived from the Greek νήκτον, translit. nekton, meaning "to swim", and was coined by Ernst Haeckel in 1890.

References

  1. 1 2 3 Ordines F, Fricke R, González F, Baldó F (2017-03-31). "First record of Neoscopelus macrolepidotus Johnson, 1863 (Actinopterygii: Myctophiformes: Neoscopelidae) from Irish waters (Porcupine Bank, north-eastern Atlantic)". Acta Ichthyologica et Piscatoria. 47 (1): 85–89. doi: 10.3750/AIEP/02141 . hdl: 10508/10882 . ISSN   0137-1592.
  2. 1 2 Carpenter KE (2002). The living marine resources of the Western Central Atlantic. Food and Agriculture Organization of the United Nations. ISBN   9251048266. OCLC   492731184.
  3. 1 2 3 4 Bray D. "Neoscopelus macrolepidotus". Fishes of Australia.
  4. 1 2 de Busserolles F, Marshall NJ (April 2017). "Seeing in the deep-sea: visual adaptations in lanternfishes". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 372 (1717). doi:10.1098/rstb.2016.0070. PMC   5312020 . PMID   28193815.
  5. Pearcy WG, Brodeur RD (2009). "Nekton". In Steele JH (ed.). Encyclopedia of Ocean Sciences (2nd ed.). pp. 1–7. doi:10.1016/b978-012374473-9.00663-9. ISBN   978-0-12-374473-9.
  6. 1 2 Kuwabara S (2010). "Occurrence of Luminous Organs on the Tongue of Two Scopelid Fishes, Neoscopelus macrolepidotus and N. microchir" (PDF). Acta Pchthyologica et Piscatoria. ISSN   0370-9361.
  7. 1 2 Davis MP, Holcroft NI, Wiley EO, Sparks JS, Leo Smith W (2014). "Species-specific bioluminescence facilitates speciation in the deep sea". Marine Biology. 161 (5): 1139–1148. doi:10.1007/s00227-014-2406-x. PMC   3996283 . PMID   24771948.