This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Wrong way to add footnotes, need to find out which sources they referred to.(October 2022) |
Oplophorus-luciferin 2-monooxygenase | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifiers | |||||||||
EC no. | 1.13.12.13 | ||||||||
Databases | |||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB structures | RCSB PDB PDBe PDBsum | ||||||||
|
In enzymology, an Oplophorus-luciferin 2-monooxygenase (EC 1.13.12.13), also known as Oplophorus luciferase (referred in this article as OpLuc) is a luciferase, an enzyme, from the deep-sea shrimp Oplophorus gracilirostris [2], belonging to a group of coelenterazine luciferases. Unlike other luciferases, it has a broader substrate specificity [3,4,6] and can also bind to bisdeoxycoelenterazine efficiently [3,4]. It is the third example of a luciferase (Other than Aequorea and Renilla) to be purified in lab [2]. The systematic name of this enzyme class is Oplophorus-luciferin:oxygen 2-oxidoreductase (decarboxylating). This enzyme is also called Oplophorus luciferase.
The two substrates of this enzyme are the luciferin, Coelenterazine and O2 and its 3 products are the oxyluciferin, Coelenteramide, CO2, and light. This enzyme belongs to the family of oxidoreductases, specifically those acting on single donors with O2 as oxidant and incorporation of two atoms of oxygen into the substrate (oxygenases). The oxygen incorporated need not be derived from O with incorporation of one atom of oxygen (internal monooxygenases o internal mixed-function oxidases). Although the enzyme is part of the group of enzymes that act on coelenterazine, such as Renilla and Gaussia luciferases, it does not share base pair sequences with these enzymes [3,4,5,7].
OpLuc catalyzes the ATP independent chemical reaction [3,4,5,6]:
The result of this process in some loss in CO2 as well as a photon of blue light emitted at ~460 nm [2,3,4]. This reaction has an optimal pH of 9, optimal salt concentration of 0.05-0.1 M, and optimal temperature of ~40 C (making it an unusually heat resistant luciferase) [2], although because O.gracilirostris are deep sea animals living in below 20 C temperatures, luciferase is normally expressed and folded at low temperatures [6].
When stimulated in Oplophorus gracilirostris, OpLuc is secreted from the base of legs and antennae of the deep-sea shrimp as a defense mechanism. This mechanism causes O.gracilirostris release a luminous, bright blue luciferase cloud [2].
The small protein subunit of OpLuc, 19kda, has an amino terminal peptide sequence that, when stimulated, signals the enzyme to bind to the coelenterazine, Oplophorus luciferin (the substrate) [3,7]. Shown in figure 1, the enzyme then oxidizes the coelenterazine in a water medium into the luminescent product, coelenteramide, and releases CO2 as a byproduct [2,3,7].
OpLuc is a complex of two covalently bonded [3] protein subunits: two molecules of 19 kDa and two molecules of 35 kDa components, making it a heterotetrameric molecule. The proteins signal the enzyme for secretion in luminescence, catalyzed by the protein 19 kDa [3,4,7]. The luciferase has many cysteine residues that stabilize the enzyme in extracellular environments using disulfide bonds [5].
This catalytic component of OpLuc has 196 amino acids [3] with one cysteine in the carboxyl terminus and is distinct from proteins found in other luciferases [4]. The protein is made up of two domains with repetitive sequencing of Ia-c and Ila-d in the peptide chain [4]. It is thought to be the protein to cause the bioluminescent reaction of O.gracilirostris, but functions ineffectively without its larger, subunit counterpart [3,4]. Although the crystal structure of OpLec has yet to be completely analyzed and mapped, 19 kDa experimentally expressed in mammalian cells (regarded as KAZ [7]). The protein was isolated and mutated to catalyze a bright and sustained luminescent reaction to create an engineered luciferase, NanoLuc (NLuc), and a coelenterazine analogue (furimazine) to be used as a cellular reporter [5,8]. A mutated ribbon model of the 19 kDa protein (named nanoKaz) is shown in figure 2.
The lesser known component of the OpLuc enzyme has 320 amino acids [3] with 11 cysteine and 5 leucine molecules [4]. The amino terminus of the protein was experimentally concluded to begin at 39 amino acids [3]. It is thought to stabilize 19 kDa and is not thought to be affect by substrate specificity [3], however its exact function is not known [3,4,7].
Although originally thought to have the exact same mechanism as the Renilla luciferase [1], this luminescence has two possible reaction routes [2], as shown in figure 3. In the top route, Oplophorus luciferin (the coelenterazine displayed as I in the scheme) is oxidized when it combines with O2(radioactively labelled O18 was used in lab experiment) in a water medium and uses a dioxetane peroxide intermediate resulting in a CO2 product and coelenteramide (II in the scheme). The lower pathway does not use an intermediate and has rapid exchanges of oxygen with the water medium. Studies show there is less product yield and is suggested to have partial involvement in the overall reaction [2]. It should be noted, however, it is likely CO2 contamination during experiments demonstrated higher yield than was occurring for the lower pathway, making this pathway highly unlikely in natural conditions [2].
Bioluminescence is the production and emission of light by living organisms. It is a form of chemiluminescence. Bioluminescence occurs widely in marine vertebrates and invertebrates, as well as in some fungi, microorganisms including some bioluminescent bacteria, and terrestrial arthropods such as fireflies. In some animals, the light is bacteriogenic, produced by symbiotic bacteria such as those from the genus Vibrio; in others, it is autogenic, produced by the animals themselves.
Luciferase is a generic term for the class of oxidative enzymes that produce bioluminescence, and is usually distinguished from a photoprotein. The name was first used by Raphaël Dubois who invented the words luciferin and luciferase, for the substrate and enzyme, respectively. Both words are derived from the Latin word lucifer, meaning "lightbearer", which in turn is derived from the Latin words for "light" (lux) and "to bring or carry" (ferre).
Ribulose-1,5-bisphosphate carboxylase/oxygenase, commonly known by the abbreviations RuBisCo, rubisco, RuBPCase, or RuBPco, is an enzyme involved in the light-independent part of photosynthesis, including the carbon fixation by which atmospheric carbon dioxide is converted by plants and other photosynthetic organisms to energy-rich molecules such as glucose. It emerged approximately four billion years ago in primordial metabolism prior to the presence of oxygen on Earth. It is probably the most abundant enzyme on Earth. In chemical terms, it catalyzes the carboxylation of ribulose-1,5-bisphosphate.
Luciferin is a generic term for the light-emitting compound found in organisms that generate bioluminescence. Luciferins typically undergo an enzyme-catalyzed reaction with molecular oxygen. The resulting transformation, which usually involves breaking off a molecular fragment, produces an excited state intermediate that emits light upon decaying to its ground state. The term may refer to molecules that are substrates for both luciferases and photoproteins.
Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). A donor chromophore, initially in its electronic excited state, may transfer energy to an acceptor chromophore through nonradiative dipole–dipole coupling. The efficiency of this energy transfer is inversely proportional to the sixth power of the distance between donor and acceptor, making FRET extremely sensitive to small changes in distance.
Pyrosequencing is a method of DNA sequencing based on the "sequencing by synthesis" principle, in which the sequencing is performed by detecting the nucleotide incorporated by a DNA polymerase. Pyrosequencing relies on light detection based on a chain reaction when pyrophosphate is released. Hence, the name pyrosequencing.
Noctiluca scintillans is a marine species of dinoflagellate that can exist in a green or red form, depending on the pigmentation in its vacuoles. It can be found worldwide, but its geographical distribution varies depending on whether it is green or red. This unicellular microorganism is known for its ability to bioluminesce, giving the water a bright blue glow seen at night. However, blooms of this species can be responsible for environmental hazards, such as toxic red tides. They may also be an indicator of anthropogenic eutrophication.
Aequorin is a calcium-activated photoprotein isolated from the hydrozoan Aequorea victoria. Its bioluminescence was studied decades before the protein was isolated from the animal by Osamu Shimomura in 1962. In the animal, the protein occurs together with the green fluorescent protein to produce green light by resonant energy transfer, while aequorin by itself generates blue light.
Firefly luciferase is the light-emitting enzyme responsible for the bioluminescence of fireflies and click beetles. The enzyme catalyses the oxidation of firefly luciferin, requiring oxygen and ATP. Because of the requirement of ATP, firefly luciferases have been used extensively in biotechnology.
A photocyte is a cell that specializes in catalyzing enzymes to produce light (bioluminescence). Photocytes typically occur in select layers of epithelial tissue, functioning singly or in a group, or as part of a larger apparatus. They contain special structures called photocyte granules. These specialized cells are found in a range of multicellular animals including ctenophora, coelenterates (cnidaria), annelids, arthropoda and fishes. Although some fungi are bioluminescent, they do not have such specialized cells.
In enzymology, a Latia-luciferin monooxygenase (demethylating) (EC 1.14.99.21) is an enzyme that catalyzes the chemical reaction
In enzymology, a Cypridina-luciferin 2-monooxygenase (EC 1.13.12.6) is an enzyme that catalyzes the chemical reaction
Renilla-luciferin 2-monooxygenase, Renilla luciferase, or RLuc, is a bioluminescent enzyme found in Renilla reniformis, belonging to a group of coelenterazine luciferases. Of this group of enzymes, the luciferase from Renilla reniformis has been the most extensively studied, and due to its bioluminescence requiring only molecular oxygen, has a wide range of applications, with uses as a reporter gene probe in cell culture, in vivo imaging, and various other areas of biological research. Recently, chimeras of RLuc have been developed and demonstrated to be the brightest luminescent proteins to date, and have proved effective in both noninvasive single-cell and whole body imaging.
In enzymology, a Watasenia-luciferin 2-monooxygenase (EC 1.13.12.8) is an enzyme that catalyzes the chemical reaction
In enzymology, a Renilla-luciferin sulfotransferase is an enzyme that catalyzes the chemical reaction
Bioreporters are intact, living microbial cells that have been genetically engineered to produce a measurable signal in response to a specific chemical or physical agent in their environment. Bioreporters contain two essential genetic elements, a promoter gene and a reporter gene. The promoter gene is turned on (transcribed) when the target agent is present in the cell’s environment. The promoter gene in a normal bacterial cell is linked to other genes that are then likewise transcribed and then translated into proteins that help the cell in either combating or adapting to the agent to which it has been exposed. In the case of a bioreporter, these genes, or portions thereof, have been removed and replaced with a reporter gene. As a result, turning on the promoter gene also turns on the reporter gene, leading to the production of reporter proteins that output a detectable signal. The presence of a signal indicates that the bioreporter has sensed a particular agent in its environment.
Coelenterazine is a luciferin, a molecule that emits light after reaction with oxygen, found in many aquatic organisms across eight phyla. It is the substrate of many luciferases such as Renilla reniformis luciferase (Rluc), Gaussia luciferase (Gluc), and photoproteins, including aequorin, and obelin. All these proteins catalyze the oxidation of this substance, a reaction catalogued EC 1.13.12.5.
Vargulin, also called Cypridinid luciferin, Cypridina luciferin, or Vargula luciferin, is the luciferin found in the ostracod Cypridina hilgendorfii, also named Vargula hilgendorfii. These bottom dwelling ostracods emit a light stream into water when disturbed presumably to deter predation. Vargulin is also used by the midshipman fish, Porichthys.
Vargula hilgendorfii, sometimes called the sea-firefly and one of three bioluminescent species known in Japan as umi-hotaru (海蛍), is a species of ostracod crustacean. It is the only member of genus Vargula to inhabit Japanese waters; all other members of its genus inhabit the Gulf of Mexico, the Caribbean Sea, and waters off the coast of California. V. hilgendorfii was formerly more common, but its numbers have fallen significantly.
Dinoflagellate luciferase (EC 1.13.12.18, Gonyaulax luciferase) is a specific luciferase, an enzyme with systematic name dinoflagellate-luciferin:oxygen 132-oxidoreductase.