Orange carotenoid-binding protein (Kerfeld et al., Structure 2003) | |||||||
---|---|---|---|---|---|---|---|
![]() Crystal structure of orange carotenoid protein (Kerfeld et al., Structure 2003) | |||||||
Identifiers | |||||||
Organism | |||||||
Symbol | Ocp | ||||||
Alt. symbols | slr1963 | ||||||
PDB | 1M98 | ||||||
UniProt | P83689 | ||||||
| |||||||
Pfam domains Carot_N, NTF2 |
Orange carotenoid protein (OCP) is a water-soluble protein which plays a role in photoprotection in diverse cyanobacteria. [1] It is the only photoactive protein known to use a carotenoid as the photoresponsive chromophore. The protein consists of two domains, with a single keto-carotenoid molecule non-covalently bound between the two domains. It is a very efficient quencher of excitation energy absorbed by the primary light-harvesting antenna complexes of cyanobacteria, the phycobilisomes. The quenching is induced by blue-green light. It is also capable of preventing oxidative damage by directly scavenging singlet oxygen (1O2).
OCP was first described in 1981 by Holt and Krogmann [2] who isolated it from the unicellular cyanobacterium Arthrospira maxima , [3] [4] although its function would remain obscure until 2006. The crystal structure of the OCP was reported in 2003. [5] At the same time the protein was shown to be an effective quencher of singlet oxygen and was suggested to be involved in photoprotection, or carotenoid transport. [6] [7] [8] In 2000, it was demonstrated that cyanobacteria could perform photoprotective fluorescence quenching independent of lipid phase transitions, differential transmembrane pH, and inhibitors. [9] The action spectrum for this quenching process suggested the involvement of carotenoids, [10] and the specific involvement of the OCP was later demonstrated by Kirilovsky and coworkers in 2006. [11] In 2008, OCP was shown to require photoactivation by strong blue-green light for its photoprotective quenching function. [12] Photoactivation is accompanied by a pronounced color change, from orange to red, which had been previously observed by Kerfeld et al in the initial structural studies. [7] [8] [5] In 2015 a combination of biophysical methods by researchers in Berkeley showed that the visible color change is the consequence of a 12Å translocation of the carotenoid. [13] [14] [15]
For a long time, cyanobacteria were considered incapable of performing non-photochemical quenching (NPQ) as a photoprotective mechanism, relying instead on a mechanism of energy redistribution between the two photosynthetic reaction centers, PSII and PSI, known as "state transitions". [16]
OCP is found in a majority of cyanobacterial genomes, [1] [17] with remarkable conservation of its amino acid sequence, implying evolutionary constraints to preserve an important function. Mutant cells engineered to lack OCP photobleach under high light [11] and become photoinhibited more rapidly under fluctuating light. [18] Under nutrient stress conditions, which are expected to be norm in marine environments, photoprotective mechanisms such as OCP become important even at lower irradiances. [19]
This protein is not found in chloroplasts, and appears to be specific to cyanobacteria. [20]
Upon illumination with blue-green light, OCP switches from an orange form (OCPO) to a red form (OCPR). The reversion of OCPR to OCPO is light independent and occurs slowly in darkness. OCPO is considered the dark, stable form of the protein, and does not contribute to phycobilisome quenching. OCPR is considered to be essential for induction of the photoprotection mechanism. The photoconversion from the orange to red form has a poor light efficiency (very low quantum yield), which helps to ensure the protein's photoprotective role only functions during high light conditions; otherwise, the dissipative NPQ process could unproductively divert light energy away from photosynthesis under light-limiting conditions. [12] [15]
As evidenced by a decreased fluorescence, OCP in its red form is capable of dissipating absorbed light energy from the phycobilisome antenna complex. According to Rakhimberdieva and coworkers, about 30-40% of the energy absorbed by phycobilisomes does not reach the reaction centers when the carotenoid-induced NPQ is active. [21] The exact mechanism and quenching site in both the carotenoid as well as the phycobilisome still remain uncertain. The linker polypeptide ApcE in the allophycocyanin (APC) core of the phycobilisomes is known to be important, [11] [22] but is not the site of quenching. [23] Several lines of evidence suggest that it is the 660 nm fluorescence emission band of the APC core which is quenched by OCPR. [21] [23] [24] The temperature dependence of the rate of fluorescence quenching is similar to that of soluble protein folding, [25] supporting the hypothesis that OCPO slightly unfolds when it converts to OCPR.
As first shown in 2003, [5] the auxiliary function of carotenoids as quenchers of singlet oxygen contributes to the photoprotective role of OCP has also been demonstrated under strong orange-red light, which are conditions where OCP cannot be photoactivated for its energy-quenching role. [26] This is significant because all oxygenic phototrophs have a particular risk of oxidative damage initiated by singlet oxygen (1O2), which is produced when their own light-harvesting pigments act as photosensitizers. [27]
The three-dimensional protein structure of OCP (in the OCPO form) was solved in 2003, before its photoprotective role had been defined. [6] The 35 kDa protein contains two structural domains: an all-α-helical N-terminal domain (NTD) consisting of two interleaved 4-helix bundles, and a mixed α/β C-terminal domain (CTD). The two domains are connected by an extended linker. In OCPO, the carotenoid spans both domains, which are tightly associated in this form of protein. In 2013 Kerfeld and co-workers showed that the NTD is the effector (quencher) domain of the protein while the CTD plays a regulatory role. [28]
The OCP participates in key protein–protein interactions that are critical to its photoprotective function. The activated OCPR form binds to allophycocyanin in the core of the phycobilisome and initiates the OCP-dependent photoprotective quenching mechanism. Another protein, the fluorescence recovery protein (FRP), interacts with the CTD in OCPR and catalyzes the reaction which reverts it back to the OCPO form. [29] Because OCPO cannot bind to the phycobilisome antenna, FRP effectively can detach OCP from the antenna and restore full light-harvesting capacity.
The primary structure (amino acid sequence) is highly conserved among OCP sequences, and the full-length protein is usually co-located on the chromosome with a second open reading frame [7] [8] that was later characterized as the FRP. [1] Often, biosynthetic genes for ketocarotenoid synthesis (e.g., CrtW) are nearby. These conserved functional linkages underscore the evolutionary importance of the OCP style of photoprotection for many cyanobacteria.
The first structure determination of the OCP coincided with the beginning of the genome sequencing era, and it was already apparent in 2003 that there is also a variety of evolutionarily related genes which encode proteins with only one of the two domains present in OCP. [5] [7] [8] The N-terminal domain (NTD), "Carot_N", is found only in cyanobacteria, but exhibits a considerable amount of gene duplication. The C-terminal domain (CTD), however, is homologous with the widespread NTF2 superfamily, which shares a protein fold with its namesake, nuclear transport factor 2, as well as around 20 other subfamilies of proteins with functions as diverse as limonene-1,2-epoxide hydrolase, SnoaL polyketide cyclase, and delta-5-3-ketosteroid isomerase (KSI). Most, if not all, of the members of the NTF2 superfamily form oligomers, often using the surface of their beta sheet to interact with another monomer or other protein.
Bioinformatic analyses carried out over the past 15 years has resulted in the identification of new groups of carotenoid proteins: [30] In addition to new families of the OCP, [17] there are HCPs [31] and CCPs that correspond to the NTD and CTD of the OCP, respectively. Based on the primary structure, the HCPs can be subdivided into at least nine evolutionarily distinct clades, each binds carotenoid. [32] [33] The CCPs resolve into 2 major groups, and these proteins also bind carotenoid. [34] Given these data, and the ability to devolve OCP into its two component domains while retaining function [35] has led to a reconstruction of the evolution of the OCP. [36] [35]
Its water-solubility, together with its status as the only known photoactive protein containing a carotenoid, makes the OCP a valuable model for studying solution-state energetic and photophysical properties of carotenoids, which are a diverse class of molecules found across all domains of life. Moreover, carotenoids are widely investigated for their properties as anti-oxidants, and thus the protein may serve as a template for delivery of carotenoids for therapeutic purposes in human medicine.
Because of its high efficiency of fluorescence quenching, coupled to its low quantum yield of photoactivation by specific wavelengths of light, OCP has ideal properties as a photoswitch and has been proposed as a novel system for developing optogenetics technologies [1] and may have other applications in optofluidics and biophotonics.
Cyanobacteria, also called Cyanobacteriota or Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name cyanobacteria refers to their color, which similarly forms the basis of cyanobacteria's common name, blue-green algae, although they are not usually scientifically classified as algae. They appear to have originated in a freshwater or terrestrial environment. Cyanobacteria produce a range of toxins known as cyanotoxins that can cause harmful health effects in humans and animals.
Xanthophylls are yellow pigments that occur widely in nature and form one of two major divisions of the carotenoid group; the other division is formed by the carotenes. The name is from Greek: xanthos (ξανθός), meaning "yellow", and phyllon (φύλλον), meaning "leaf"), due to their formation of the yellow band seen in early chromatography of leaf pigments.
Phycocyanin is a pigment-protein complex from the light-harvesting phycobiliprotein family, along with allophycocyanin and phycoerythrin. It is an accessory pigment to chlorophyll. All phycobiliproteins are water-soluble, so they cannot exist within the membrane like carotenoids can. Instead, phycobiliproteins aggregate to form clusters that adhere to the membrane called phycobilisomes. Phycocyanin is a characteristic light blue color, absorbing orange and red light, particularly near 620 nm, and emits fluorescence at about 650 nm. Allophycocyanin absorbs and emits at longer wavelengths than phycocyanin C or phycocyanin R. Phycocyanins are found in cyanobacteria. Phycobiliproteins have fluorescent properties that are used in immunoassay kits. Phycocyanin is from the Greek phyco meaning “algae” and cyanin is from the English word “cyan", which conventionally means a shade of blue-green and is derived from the Greek “kyanos" which means a somewhat different color: "dark blue". The product phycocyanin, produced by Aphanizomenon flos-aquae and Spirulina, is for example used in the food and beverage industry as the natural coloring agent 'Lina Blue' or 'EXBERRY Shade Blue' and is found in sweets and ice cream. In addition, fluorescence detection of phycocyanin pigments in water samples is a useful method to monitor cyanobacteria biomass.
Phycobilisomes are light harvesting antennae of photosystem II in cyanobacteria, red algae and glaucophytes. It was lost in the plastids of green algae / plants (chloroplasts).
Carboxysomes are bacterial microcompartments (BMCs) consisting of polyhedral protein shells filled with the enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)—the predominant enzyme in carbon fixation and the rate limiting enzyme in the Calvin cycle—and carbonic anhydrase.
Allophycocyanin is a protein from the light-harvesting phycobiliprotein family, along with phycocyanin, phycoerythrin and phycoerythrocyanin. It is an accessory pigment to chlorophyll. All phycobiliproteins are water-soluble and therefore cannot exist within the membrane like carotenoids, but aggregate, forming clusters that adhere to the membrane called phycobilisomes. Allophycocyanin absorbs and emits red light, and is readily found in Cyanobacteria, and red algae. Phycobilin pigments have fluorescent properties that are used in immunoassay kits. In flow cytometry, it is often abbreviated APC. To be effectively used in applications such as FACS, High-Throughput Screening (HTS) and microscopy, APC needs to be chemically cross-linked.
Phycobiliproteins are water-soluble proteins present in cyanobacteria and certain algae. They capture light energy, which is then passed on to chlorophylls during photosynthesis. Phycobiliproteins are formed of a complex between proteins and covalently bound phycobilins that act as chromophores. They are most important constituents of the phycobilisomes.
A light-harvesting complex consists of a number of chromophores which are complex subunit proteins that may be part of a larger super complex of a photosystem, the functional unit in photosynthesis. It is used by plants and photosynthetic bacteria to collect more of the incoming light than would be captured by the photosynthetic reaction center alone. The light which is captured by the chromophores is capable of exciting molecules from their ground state to a higher energy state, known as the excited state. This excited state does not last very long and is known to be short-lived.
Photoprotection is the biochemical process that helps organisms cope with molecular damage caused by sunlight. Plants and other oxygenic phototrophs have developed a suite of photoprotective mechanisms to prevent photoinhibition and oxidative stress caused by excess or fluctuating light conditions. Humans and other animals have also developed photoprotective mechanisms to avoid UV photodamage to the skin, prevent DNA damage, and minimize the downstream effects of oxidative stress.
In biophysics, the Kautsky effect is a phenomenon consisting of a typical variation in the behavior of a plant fluorescence when exposed to light. It was discovered in 1931 by H. Kautsky and A. Hirsch.
Photoinhibition is light-induced reduction in the photosynthetic capacity of a plant, alga, or cyanobacterium. Photosystem II (PSII) is more sensitive to light than the rest of the photosynthetic machinery, and most researchers define the term as light-induced damage to PSII. In living organisms, photoinhibited PSII centres are continuously repaired via degradation and synthesis of the D1 protein of the photosynthetic reaction center of PSII. Photoinhibition is also used in a wider sense, as dynamic photoinhibition, to describe all reactions that decrease the efficiency of photosynthesis when plants are exposed to light.
Synechocystis sp. PCC6803 is a strain of unicellular, freshwater cyanobacteria. Synechocystis sp. PCC6803 is capable of both phototrophic growth by oxygenic photosynthesis during light periods and heterotrophic growth by glycolysis and oxidative phosphorylation during dark periods. Gene expression is regulated by a circadian clock and the organism can effectively anticipate transitions between the light and dark phases.
In molecular biology the orange carotenoid N-terminal domain is a protein domain found predominantly at the N-terminus of the Orange carotenoid protein (OCP), and is involved in non-covalent binding of a carotenoid chromophore. It is unique for being present in soluble proteins, whereas the vast majority of domains capable of binding carotenoids are intrinsic membrane proteins. Thus far, it has exclusively been found in cyanobacteria, among which it is widespread. The domain also exists on its own, in uncharacterized cyanobacterial proteins referred to as "Red Carotenoid Protein" (RCP). The domain adopts an alpha-helical structure consisting of two four-helix bundles.
Antheraxanthin is a bright yellow accessory pigment found in many organisms that perform photosynthesis. It is a xanthophyll cycle pigment, an oil-soluble alcohol within the xanthophyll subgroup of carotenoids. Antheraxanthin is both a component in and product of the cellular photoprotection mechanisms in photosynthetic green algae, red algae, euglenoids, and plants.
Iron-starvation-induced protein A, also known as isiA, is a photosynthesis-related chlorophyll-containing protein found in cyanobacteria. It belongs to the chlorophyll-a/b-binding family of proteins, and has been shown to have a photoprotection role in preventing oxidative damage via energy dissipation. It was originally identified under Fe starvation, and thus received the name iron-starvation-induced protein A. However, the protein has more recently been found to respond to a variety of stress conditions such as high irradiance. It can aggregate with carotenoids and form rings around the PSI reaction center complexes to aid in photoprotective energy dissipation.
In photosynthesis, state transitions are rearrangements of the photosynthetic apparatus which occur on short time-scales. The effect is prominent in cyanobacteria, whereby the phycobilisome light-harvesting antenna complexes alter their preference for transfer of excitation energy between the two reaction centers, PS I and PS II. This shift helps to minimize photodamage caused by reactive oxygen species (ROS) under stressful conditions such as high light, but may also be used to offset imbalances between the rates of generating reductant and ATP.
3′-Hydroxyechinenone is a keto-carotenoid pigment found in cyanobacteria and microalgae. Carotenoids belong to a larger class of phytochemicals known as terpenoids. The chemical formula of canthaxanthin is C40H54O2. It is found non-covalently bound in the orange carotenoid protein (OCP), which is a soluble protein involved in photoprotection and non-photochemical quenching of photosynthesis.
Fluorescence recovery protein (FRP) is a small protein involved in regulating non-photochemical quenching in cyanobacteria. It prevents accumulation of the red photoactivated form of orange carotenoid protein (OCP), thereby reducing the amount of fluorescence quenching that occurs between the OCP and the phycobilisome antenna complexes. It interacts with the C-terminal domain of OCP, which shares homology with the NTF2 superfamily.
David W. Krogmann was an American biologist and a professor of biochemistry at Purdue University. He is known for his work in photosynthesis in chloroplasts and cyanobacteria.
In molecular biology, the PYP domain is a p-coumaric acid-binding protein domain. They are present in various proteins in bacteria.