Optofluidics

Last updated

Optofluidics is a research and technology area that combines the advantages of fluidics (in particular microfluidics) and optics. Applications of the technology include displays, biosensors, lab-on-chip devices, lenses, and molecular imaging tools and energy.

Contents

History

The idea of fluid-optical devices can be traced back at least as far as the 18th century, when spinning pools of mercury were proposed (and eventually developed) as liquid-mirror telescopes. In the 20th century new technologies such as dye lasers and liquid-core waveguides were developed that took advantage of the tunability and physical adaptability that liquids provided to these newly emerging photonic systems. The field of optofluidics formally began to emerge in the mid-2000s as the fields of microfluidics and nanophotonics were maturing and researchers began to look for synergies between these two areas. [1] One of the primary applications of the field is for lab-on-a-chip and biophotonic products. [2] [3] [4]

Companies and technology transfer

Optofluidic and related research has led to the formation of a number of new products and start-up companies. Varioptic specializes in the development of electrowetting based lenses for numerous applications. Optofluidics, Inc. was launched in 2011 from Cornell University in order to develop tools for molecular trapping and disease diagnosis based on photonic resonator technology. Liquilume from UC Santa Cruz specializes in molecular diagnostics based on arrow waveguides.

In 2012, the European Commission has launched a new COST framework that is concerned solely with optofluidic technology and their application. [5]

Examples of Specific Applications

Given the broad range of technologies that have already been developed in the field of microfluidics and the many potential applications of integrating optical components into these systems, the range of applications for optofluidic technology is vast.

Laminar Flow Based Optofluidic Waveguides

Optofluidic waveguides are based on principles of traditional optical waveguides and microfluidic techniques used to maintain gradients or boundaries between flowing fluids. Yang et al. used microfluidic techniques based on laminar flow to generate fluid-based gradient-indices of refraction. [6] This was implemented by flowing two cladding layers of deionized water () around a core layer of ethylene glycol (). Using traditional microfluidic techniques [7] to generate and maintain gradients of fluids, Yang et al. were able maintain refractive index profiles ranging from step-index profiles to depth-varying gradient-index profiles. This allowed for the novel and dynamic generation of complex waveguides.

Optofluidic Photonic Crystal Fibers

Traditional, hollow photonic crystal fiber Photonic-crystal fiber.jpg
Traditional, hollow photonic crystal fiber

Optofluidic Photonic-crystal fibers (PCFs) are traditional PFCs modified with microfluidic techniques. Photonic-crystal fibers are a type of fiber optic waveguide with cladding layers arranged in a crystalline fashion in their cross-sectional areas. Traditionally, these structured cladding layers are filled with a solid-state material with a different refractive indices or are hollow. Each cladded core then acts as a single mode fiber passing multiple light paths in parallel. [8] Traditional PCFs are also limited to using hollow or solid-state cores that must be filled at the time of construction. This means that the material properties the PCFs were set at the time of construction and were limited to the material properties of solid-state materials. [8]

Example of how a photonic-crystal fiber can be used to generate a spectral supercontinuum from a narrowband source. Optics-SupercontinuumSpectrum.png
Example of how a photonic-crystal fiber can be used to generate a spectral supercontinuum from a narrowband source.

Viewig et al. used microfluidic technology to selectively fill sections of photonic crystal fibers with fluids that exhibit a high degree of Kerr nonlinearity such as toluene and carbon tetrachloride. [9] Selectively filling hollow PFCs with fluid allows for control over thermal diffusion via spatial segregation and allows for the ability to pattern multiple different types of fluid. Using non-linear fluids, Vieweg et al. were able to generate a soliton continuum which has many applications for imaging and communications. [10] [9]

See also

Related Research Articles

Microphotonics is a branch of technology that deals with directing light on a microscopic scale and is used in optical networking. Particularly, it refers to the branch of technology that deals with wafer-level integrated devices and systems that emit, transmit, detect, and process light along with other forms of radiant energy with photon as the quantum unit.

Electro–optics is a branch of electrical engineering, electronic engineering, materials science, and material physics involving components, electronic devices such as lasers, laser diodes, LEDs, waveguides, etc. which operate by the propagation and interaction of light with various tailored materials. It is closely related to the branch of optics, involving application of generation of photons, called photonics. It is not only concerned with the "electro–optic effect", since it deals with the interaction between the electromagnetic and the electrical states of materials.

<span class="mw-page-title-main">Photonics</span> Technical applications of optics

Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light. The term photonics developed as an outgrowth of the first practical semiconductor light emitters invented in the early 1960s and optical fibers developed in the 1970s.

<span class="mw-page-title-main">Photonic crystal</span> Periodic optical nanostructure that affects the motion of photons

A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic lattices of semiconductors affect their conductivity of electrons. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, as artificially produced, promise to be useful in a range of applications.

<span class="mw-page-title-main">Photonic-crystal fiber</span> Class of optical fiber based on the properties of photonic crystals

Photonic-crystal fiber (PCF) is a class of optical fiber based on the properties of photonic crystals. It was first explored in 1996 at University of Bath, UK. Because of its ability to confine light in hollow cores or with confinement characteristics not possible in conventional optical fiber, PCF is now finding applications in fiber-optic communications, fiber lasers, nonlinear devices, high-power transmission, highly sensitive gas sensors, and other areas. More specific categories of PCF include photonic-bandgap fiber, holey fiber, hole-assisted fiber, and Bragg fiber. Photonic crystal fibers may be considered a subgroup of a more general class of microstructured optical fibers, where light is guided by structural modifications, and not only by refractive index differences.

In optics, an anti-resonant reflecting optical waveguide (ARROW) is a waveguide that uses the principle of thin-film interference to guide light with low loss. It is formed from an anti-resonant Fabry–Pérot reflector. The optical mode is leaky, but relatively low-loss propagation can be achieved by making the Fabry–Pérot reflector of sufficiently high quality or small size.

<span class="mw-page-title-main">Optical fiber</span> Light-conducting fiber

An optical fiber, or optical fibre in Commonwealth English, is a flexible, transparent fiber made by drawing glass (silica) or plastic to a diameter slightly thicker than that of a human hair. Optical fibers are used most often as a means to transmit light between the two ends of the fiber and find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, some of them being fiber optic sensors and fiber lasers.

An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber waveguides, transparent dielectric waveguides made of plastic and glass, liquid light guides, and liquid waveguides.

<span class="mw-page-title-main">Silicon photonics</span> Photonic systems which use silicon as an optical medium

Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what is known as silicon on insulator (SOI).

Chiral Photonics, Inc. is a photonics company based in Pine Brook, New Jersey, founded in 1999. The company is developing a new class of optical devices based on twisting glass optical fibers. These in-fiber devices aim to displace discrete optical elements such as lasers, filters and sensors. They benefit from optical fiber’s transmission efficiency, robustness and ease of integration.

<span class="mw-page-title-main">Digital planar holography</span>

Digital planar holography (DPH) is a method for designing and fabricating miniature components for integrated optics. It was invented by Vladimir Yankov and first published in 2003. The essence of the DPH technology is embedding computer designed digital holograms inside a planar waveguide. Light propagates through the plane of the hologram instead of perpendicularly, allowing for a long interaction path. Benefits of a long interaction path have long been used by volume or thick holograms. Planar configuration of the hologram provider for easier access to the embedded diagram aiding in its manufacture.

<span class="mw-page-title-main">Slot-waveguide</span>

A slot-waveguide is an optical waveguide that guides strongly confined light in a subwavelength-scale low refractive index region by total internal reflection.

A liquid-crystal laser is a laser that uses a liquid crystal as the resonator cavity, allowing selection of emission wavelength and polarization from the active laser medium. The lasing medium is usually a dye doped into the liquid crystal. Liquid-crystal lasers are comparable in size to diode lasers, but provide the continuous wide spectrum tunability of dye lasers while maintaining a large coherence area. The tuning range is typically several tens of nanometers. Self-organization at micrometer scales reduces manufacturing complexity compared to using layered photonic metamaterials. Operation may be either in continuous wave mode or in pulsed mode.

Demetri Psaltis is a Greek-American electrical engineer who was the Dean of the School of Engineering at École Polytechnique Fédérale de Lausanne from 2007 to 2017. He is a Professor in Bioengineering and Director of the Optics Laboratory of the EPFL. He is one of the founders of the term and the field of optofluidics. He is also well known for his past work in holography, especially with regards to optical computing, holographic data storage, and neural networks. He is an author of over 1100 publications, contributed more than 20 book chapters, invented more than 50 patents, and currently has a h-index of 98.

Microstructured optical fibers (MOF) are optical fiber waveguides where guiding is obtained through manipulation of waveguide structure rather than its index of refraction.

In physics, a high contrast grating is a single layer near-wavelength grating physical structure where the grating material has a large contrast in index of refraction with its surroundings. The term near-wavelength refers to the grating period, which has a value between one optical wavelength in the grating material and that in its surrounding materials.

Integrated quantum photonics, uses photonic integrated circuits to control photonic quantum states for applications in quantum technologies. As such, integrated quantum photonics provides a promising approach to the miniaturisation and scaling up of optical quantum circuits. The major application of integrated quantum photonics is Quantum technology:, for example quantum computing, quantum communication, quantum simulation, quantum walks and quantum metrology.

An erbium-doped waveguide amplifier is a type of an optical amplifier. It is a close relative of an EDFA, Erbium-doped fiber amplifier, and in fact EDWA's basic operating principles are identical to those of the EDFA. Both of them can be used to amplify infrared light at wavelengths in optical communication bands between 1500 and 1600 nm. However, whereas an EDFA is made using a free-standing fiber, an EDWA is typically produced on a planar substrate, sometimes in ways that are very similar to the methods used in electronic integrated circuit manufacturing. Therefore, the main advantage of EDWAs over EDFAs lies in their potential to be intimately integrated with other optical components on the same planar substrate and thus making EDFAs unnecessary.

<span class="mw-page-title-main">Ravindra Kumar Sinha (physicist)</span> Indian physicist and administrator

Prof. Ravindra Kumar Sinha is the Vice Chancellor of Gautam Buddha University, Greater Noida, Gautam Budh Nagar Under UP Government. He was the director of the CSIR-Central Scientific Instruments Organisation (CSIR-CSIO) Sector-30C, Chandigarh-160 030, India. He has been a Professor - Applied Physics, Dean-Academic [UG] & Chief Coordinator: TIFAC-Center of Relevance and Excellence in Fiber Optics and Optical Communication, Mission REACH Program, Technology Vision-2020, Govt. of India Delhi Technological University Bawana Road, Delhi-110042, India.

References

  1. Psaltis, D.; Quake, S. R.; Yang, C. (2006). "Developing optofluidic technology through the fusion of microfluidics and optics". Nature. 442 (7101): 381–386. Bibcode:2006Natur.442..381P. doi:10.1038/nature05060. PMID   16871205. S2CID   1729058.
  2. Zahn, p. 185.
  3. Boas, Gary (June 2011). "Optofluidics and the Real World: Technologies Evolve to Meet 21st Century Challenges". Photonics Spectra. Retrieved 2011-06-26.
  4. "Optofluidics: Optofluidics can create small, cheap biophotonic devices". Jul 1, 2006. Retrieved 2011-06-26.[ permanent dead link ]
  5. "COST Action MP1205 Advances in Optofluidics: Integration of Optical Control and Photonics with Microfluidics". Archived from the original on 2017-11-26. Retrieved 2017-02-14.
  6. Yang, Y.; Liu, A.Q.; Chin, L.K.; Zhang, X.M.; Tsai, D.P.; Lin, C.L.; Lu, C.; Wang, G.P.; Zheludev, N.I. (January 2012). "Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation". Nature Communications. 3 (1): 651. Bibcode:2012NatCo...3..651Y. doi:10.1038/ncomms1662. ISSN   2041-1723. PMC   3272574 . PMID   22337129.
  7. Azizipour, Neda; Avazpour, Rahi; Rosenzweig, Derek H.; Sawan, Mohamad; Ajji, Abdellah (2020-06-18). "Evolution of Biochip Technology: A Review from Lab-on-a-Chip to Organ-on-a-Chip". Micromachines. 11 (6): 599. doi: 10.3390/mi11060599 . ISSN   2072-666X. PMC   7345732 . PMID   32570945.
  8. 1 2 Tu, Haohua; Boppart, Stephen A. (2012-07-23). "Coherent fiber supercontinuum for biophotonics". Laser & Photonics Reviews. 7 (5): 628–645. doi:10.1002/lpor.201200014. ISSN   1863-8880. PMC   3864867 . PMID   24358056.
  9. 1 2 Vieweg, M.; Gissibl, T.; Pricking, S.; Kuhlmey, B. T.; Wu, D. C.; Eggleton, B. J.; Giessen, H. (2010-11-17). "Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers". Optics Express. 18 (24): 25232–25240. Bibcode:2010OExpr..1825232V. doi:10.1364/oe.18.025232. ISSN   1094-4087. PMID   21164870.
  10. Shao, Liyang; Liu, Zhengyong; Hu, Jie; Gunawardena, Dinusha; Tam, Hwa-Yaw (2018-03-24). "Optofluidics in Microstructured Optical Fibers". Micromachines. 9 (4): 145. doi: 10.3390/mi9040145 . ISSN   2072-666X. PMC   6187474 . PMID   30424079.

Further reading