In Euclidean geometry, for a plane curve C and a given fixed point O, the pedal equation of the curve is a relation between r and p where r is the distance from O to a point on C and p is the perpendicular distance from O to the tangent line to C at the point. The point O is called the pedal point and the values r and p are sometimes called the pedal coordinates of a point relative to the curve and the pedal point. It is also useful to measure the distance of O to the normal pc (the contrapedal coordinate) even though it is not an independent quantity and it relates to (r, p) as
Some curves have particularly simple pedal equations and knowing the pedal equation of a curve may simplify the calculation of certain of its properties such as curvature. These coordinates are also well suited for solving certain type of force problems in classical mechanics and celestial mechanics.
For C given in rectangular coordinates by f(x, y) = 0, and with O taken to be the origin, the pedal coordinates of the point (x, y) are given by: [1]
The pedal equation can be found by eliminating x and y from these equations and the equation of the curve.
The expression for p may be simplified if the equation of the curve is written in homogeneous coordinates by introducing a variable z, so that the equation of the curve is g(x, y, z) = 0. The value of p is then given by [2]
where the result is evaluated at z=1
For C given in polar coordinates by r = f(θ), then
where is the polar tangential angle given by
The pedal equation can be found by eliminating θ from these equations. [3]
Alternatively, from the above we can find that
where is the "contrapedal" coordinate, i.e. distance to the normal. This implies that if a curve satisfies an autonomous differential equation in polar coordinates of the form:
its pedal equation becomes
As an example take the logarithmic spiral with the spiral angle α:
Differentiating with respect to we obtain
hence
and thus in pedal coordinates we get
or using the fact that we obtain
This approach can be generalized to include autonomous differential equations of any order as follows: [4] A curve C which a solution of an n-th order autonomous differential equation () in polar coordinates
is the pedal curve of a curve given in pedal coordinates by
where the differentiation is done with respect to .
Solutions to some force problems of classical mechanics can be surprisingly easily obtained in pedal coordinates.
Consider a dynamical system:
describing an evolution of a test particle (with position and velocity ) in the plane in the presence of central and Lorentz like potential. The quantities:
are conserved in this system.
Then the curve traced by is given in pedal coordinates by
with the pedal point at the origin. This fact was discovered by P. Blaschke in 2017. [5]
As an example consider the so-called Kepler problem, i.e. central force problem, where the force varies inversely as a square of the distance:
we can arrive at the solution immediately in pedal coordinates
where corresponds to the particle's angular momentum and to its energy. Thus we have obtained the equation of a conic section in pedal coordinates.
Inversely, for a given curve C, we can easily deduce what forces do we have to impose on a test particle to move along it.
For a sinusoidal spiral written in the form
the polar tangential angle is
which produces the pedal equation
The pedal equation for a number of familiar curves can be obtained setting n to specific values: [6]
n | Curve | Pedal point | Pedal eq. |
---|---|---|---|
All | Circle with radius a | Center | |
1 | Circle with diameter a | Point on circumference | pa = r2 |
−1 | Line | Point distance a from line | p = a |
1⁄2 | Cardioid | Cusp | p2a = r3 |
−1⁄2 | Parabola | Focus | p2 = ar |
2 | Lemniscate of Bernoulli | Center | pa2 = r3 |
−2 | Rectangular hyperbola | Center | rp = a2 |
A spiral shaped curve of the form
satisfies the equation
and thus can be easily converted into pedal coordinates as
Special cases include:
Curve | Pedal point | Pedal eq. | |
---|---|---|---|
1 | Spiral of Archimedes | Origin | |
−1 | Hyperbolic spiral | Origin | |
1⁄2 | Fermat's spiral | Origin | |
−1⁄2 | Lituus | Origin |
For an epi- or hypocycloid given by parametric equations
the pedal equation with respect to the origin is [7]
or [8]
with
Special cases obtained by setting b=a⁄n for specific values of n include:
n | Curve | Pedal eq. |
---|---|---|
1, −1⁄2 | Cardioid | |
2, −2⁄3 | Nephroid | |
−3, −3⁄2 | Deltoid | |
−4, −4⁄3 | Astroid |
Other pedal equations are:, [9]
Curve | Equation | Pedal point | Pedal eq. |
---|---|---|---|
Line | Origin | ||
Point | Origin | ||
Circle | Origin | ||
Involute of a circle | Origin | ||
Ellipse | Center | ||
Hyperbola | Center | ||
Ellipse | Focus | ||
Hyperbola | Focus | ||
Logarithmic spiral | Pole | ||
Cartesian oval | Focus | ||
Cassini oval | Focus | ||
Cassini oval | Center |
A centripetal force is a force that makes a body follow a curved path. The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path. Isaac Newton described it as "a force by which bodies are drawn or impelled, or in any way tend, towards a point as to a centre". In the theory of Newtonian mechanics, gravity provides the centripetal force causing astronomical orbits.
In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point is called the pole, and the ray from the pole in the reference direction is the polar axis. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. Angles in polar notation are generally expressed in either degrees or radians.
In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols , (where is the nabla operator), or . In a Cartesian coordinate system, the Laplacian is given by the sum of second partial derivatives of the function with respect to each independent variable. In other coordinate systems, such as cylindrical and spherical coordinates, the Laplacian also has a useful form. Informally, the Laplacian Δf (p) of a function f at a point p measures by how much the average value of f over small spheres or balls centered at p deviates from f (p).
In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric tensor on M consists of a metric tensor at each point p of M that varies smoothly with p.
In geometry, a solid of revolution is a solid figure obtained by rotating a plane figure around some straight line, which may not intersect the generatrix. The surface created by this revolution and which bounds the solid is the surface of revolution.
In geometry, a cardioid is a plane curve traced by a point on the perimeter of a circle that is rolling around a fixed circle of the same radius. It can also be defined as an epicycloid having a single cusp. It is also a type of sinusoidal spiral, and an inverse curve of the parabola with the focus as the center of inversion. A cardioid can also be defined as the set of points of reflections of a fixed point on a circle through all tangents to the circle.
In mathematics, a pedal curve of a given curve results from the orthogonal projection of a fixed point on the tangent lines of this curve. More precisely, for a plane curve C and a given fixed pedal pointP, the pedal curve of C is the locus of points X so that the line PX is perpendicular to a tangent T to the curve passing through the point X. Conversely, at any point R on the curve C, let T be the tangent line at that point R; then there is a unique point X on the tangent T which forms with the pedal point P a line perpendicular to the tangent T – the pedal curve is the set of such points X, called the foot of the perpendicular to the tangent T from the fixed point P, as the variable point R ranges over the curve C.
In geometry, an envelope of a planar family of curves is a curve that is tangent to each member of the family at some point, and these points of tangency together form the whole envelope. Classically, a point on the envelope can be thought of as the intersection of two "infinitesimally adjacent" curves, meaning the limit of intersections of nearby curves. This idea can be generalized to an envelope of surfaces in space, and so on to higher dimensions.
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.
In geometry, a cissoid is a plane curve generated from two given curves C1, C2 and a point O. Let L be a variable line passing through O and intersecting C1 at P1 and C2 at P2. Let P be the point on L so that Then the locus of such points P is defined to be the cissoid of the curves C1, C2 relative to O.
In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.
An osculating circle is a circle that best approximates the curvature of a curve at a specific point. It is tangent to the curve at that point and has the same curvature as the curve at that point. The osculating circle provides a way to understand the local behavior of a curve and is commonly used in differential geometry and calculus.
In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form
In geometry, a strophoid is a curve generated from a given curve C and points A and O as follows: Let L be a variable line passing through O and intersecting C at K. Now let P1 and P2 be the two points on L whose distance from K is the same as the distance from A to K. The locus of such points P1 and P2 is then the strophoid of C with respect to the pole O and fixed point A. Note that AP1 and AP2 are at right angles in this construction.
In classical mechanics, Routh's procedure or Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the Lagrangian and Hamiltonian functions. Routhian mechanics is equivalent to Lagrangian mechanics and Hamiltonian mechanics, and introduces no new physics. It offers an alternative way to solve mechanical problems.
In classical mechanics, holonomic constraints are relations between the position variables that can be expressed in the following form:
A two-dimensional elastic membrane under tension can support transverse vibrations. The properties of an idealized drumhead can be modeled by the vibrations of a circular membrane of uniform thickness, attached to a rigid frame. Due to the phenomenon of resonance, at certain vibration frequencies, its resonant frequencies, the membrane can store vibrational energy, the surface moving in a characteristic pattern of standing waves. This is called a normal mode. A membrane has an infinite number of these normal modes, starting with a lowest frequency one called the fundamental mode.
In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.
In fluid dynamics, Taylor scraping flow is a type of two-dimensional corner flow occurring when one of the wall is sliding over the other with constant velocity, named after G. I. Taylor.
A proper reference frame in the theory of relativity is a particular form of accelerated reference frame, that is, a reference frame in which an accelerated observer can be considered as being at rest. It can describe phenomena in curved spacetime, as well as in "flat" Minkowski spacetime in which the spacetime curvature caused by the energy–momentum tensor can be disregarded. Since this article considers only flat spacetime—and uses the definition that special relativity is the theory of flat spacetime while general relativity is a theory of gravitation in terms of curved spacetime—it is consequently concerned with accelerated frames in special relativity.