Pemphigus spyrothecae

Last updated

Pemphigus spyrothecae
Pemphigus-spirothecae under microscope sexupara.jpg
Microscope view
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Hemiptera
Suborder: Sternorrhyncha
Family: Aphididae
Subfamily: Eriosomatinae
Genus: Pemphigus
Species:
P. spyrothecae
Binomial name
Pemphigus spyrothecae
Passerini, 1860

Pemphigus spyrothecae, or the poplar spiral gall aphid, is a social insect which exhibits apparent altruistic behaviors. The aphids form galls and act as colony defenders, at times sacrificing their own lives to do so. It has been shown that colony defense is more likely in habitats that are difficult to obtain and can hold a large number of individuals. [1] These gall locations are crucial because plants have a short window in which a gall can be produced. [1] Thus, it is important for there to be a defense system that enables the aphids to retain their galls. The need for defense arises when the gall is opened up to allow winged aphid migrants to leave and to release any waste. [1] The process of repairing the holes can take up to 10 days; during this time, the gall is susceptible to intruding predators. [2]

Contents

Description

P. spyrothecae is green, red or yellow in color and smooth to the touch. The outer surface of this species develops as the edges of the petiole of Populus nigra thicken, flatten and twist. [3] In parallel to the petiole's shape, a gall forms into a spiral shape similar to that of the inside of a snail's shell. [4] The fundatrix, or parthenogenetic female aphid produced on the primary host plant from an overwintering fertilized egg, is pale green; these individuals allow the second generation alatae to form within the gall. [5] The galls typically mature in late August to early September and change color from green to red over the course of maturation. At this stage, the alatae exit the gall through many small pores along the spirals' seams. [6] In terms of geographical distribution, P. spyrothecae are distributed across Europe, North Africa (Tunisia), western Siberia, Pakistan and some locations within Canada. [7]

Taxonomy

Pemphigus spyrothecae is in the superfamily Aphidoidea, in the hymopterous division of the order Hemiptera, which consists of insects with sucking parts of the mouth. P. spyrothecae is a member of the suborder Sternorrhyncha, which includes scale insects, psyllids, whiteflies, aphids. These organisms have two pairs of membranous wings and a flexible forewing, along with an herbivorous diet. [8] As a member of the family Aphididae, which consists of the aphids or plantlice, this species consists of soft-bodied insects that live in colonies on their host plants. Furthermore, the Aphididae include winged or wingless forms, with six-segment antennae. [8] Every species of this family has a dual-segmented tarsi with the second segment having two claws. A pair of short cornicles protrude from the last abdominal segment, in addition to the cauda, a posterior projection on the tip of the abdomen. [9] Pemphigus spyrothecae is included in the genus Pemphigus.

Behavior and ecology

Altruistic soldier caste

Early characterization of the aphid "soldier"

The aphid soldier exhibits its first distinguishing physical traits as a first-instar nymph, the phase following its complete maturation in the egg. There are two types of first instar nymphs within galls: one type of nymph is thick-legged and attacks insects introduced into galls. Another type of nymph is normal-legged. [10] Monomorphic first-instar nymphs of Pemphigus dorocola attack moth larvae, a predator, when it is experimentally introduced to the gall. [11] After observing a physical resemblance between these aphids and the thick-legged P. spyrothecae larvae, Aoki suggested that these insects also defended the gall. His prediction was confirmed, as he later observed a caste between normal-legged first-instar nymphs as "reproductives-to-be" and the thick-legged nymphs as defenders, or in his words, "soldiers". [11] This was later deemed the first discovery of aphid soldiers from a locality outside of East Asia. These soldiers have different morphological states from other members of the species. [12] First, the first-instar soldiers tend to be more aggressive. They also have thick hind legs and a stylet, which is used to attack invaders. [13] [14]

Fortress defense

Pemphigus spyrothecae Pemphigus spyrothecae 01.JPG
Pemphigus spyrothecae

P. spyrothecae is capable of fortress defense through manipulation of the composition of aphids in galls. When introduced to a single predator, colonies with soldiers usually killed the predator, incurring the loss of a few soldiers. In colonies with only non-soldiers, predators killed the aphids and ate them. [15] [16]

In a later study, Foster and Rhoden (1997) examined the effectiveness of soldiers in fortress defense. [17] They manipulated the numbers of soldiers and non-soldiers in sets of galls that remained in contact with poplar trees at the research site. When there was a combination of soldiers and non-soldiers, the gall was ten times less likely to be attacked by a predator compared to a gall with only non-soldier aphids. These results led Foster and Rhoden to conclude that soldiers effectively defend against predation under natural conditions. Earlier laboratory experiments demonstrated that soldiers could prevent specialist gall predators from attacking the gall. However, in this study, Foster and Rhoden found that such protection could also take place in the field. Five different predators attack the P. spyrothecae galls: specialist A. minki, generalists S. ribesii and A. nemoralis and two other unidentified generalist predators. [13]

Effectiveness of soldier attacks against predators

P. syprothecae, like other aphid species that attack predators, maintain a singular thrusting motion as they pierce the predator with their stylets. [18] Repeated stabbing rarely occurs. This species can also utilize its legs—sometimes all six—in order to squeeze the predator. The purpose of this motion is to tear the predator's cuticle and ultimately rupture its internal structures. [19] Although detailed quantitative observations were not included in the Rhoden and Foster study, the attacking behavior was deemed costly to the soldiers. Thus, a cost-benefit analysis most likely plays a role in a soldier's decision to attack the predator.

Influence of relatedness on the soldier caste

Since P. spyrothecae clonally reproduce, genetic relatedness within colonies is rather simple: an individual aphid is either a clone of its neighbors or it is not. Since every generation within the gall displays a high degree of relatedness due to cloning, any deviation from a colony's genetic uniformity (excluding mutation) can be traced back to intergall migration. [13] The ease of intergall migration is rooted in the fact that the colonies are present in the galls on the primary host for a long period of time, only migrating once the summer has passed. [13]

Clonal mixing and the soldier caste

The genetic relationships within aphid colonies help explain the evolution of the altruistic soldier hierarchy of P. spyrothecae. [13] More specifically, with the utilization of field trapping and microsatellites, the researchers were able to examine the degree of clonal mixing in the colony. Clonal mixing is defined as the "mixing" of genes "individual from different clones… which will dilute the benefit of cooperation by wasting it on unrelated clones" (Johnson 1525). [13] The researchers predicted that the reason that galls were a critical factor to the evolution of soldiers... Given the fact that a gall was defendable and valuable, the authors anticipated that this served as a barrier to the intrusion of other foreign clones via clonal mixing. Johnson et al. found that while soldiers typically migrate and have the capability to moult and reproduce outside of its own gall, clonal mixing was low overall. Given this insignificant level of clonal mixing, there is a low chance for barriers to the evolution and propagation of an altruistic soldier caste within the species. Ultimately, Johnson et al. (2002) became the first researchers to utilize species-specific nuclear DNA markers in order to get a clear sense of the degree of clonal diversity within the P. spyrothecae galls; with the additional usage of trapping data, their prediction of intergall migration was also confirmed. [13]

Clonal mixing as an adaptive event

Since trapping data confirmed that all migrants are soldiers, Johnson et al. infer that these aphids can grow and produce winged emigrants in galls as an adaptive strategy of cloning instead of a chance event. This confirms the earlier belief that soldiers had evolved from specialized migrants. [20] However, further studies on colonies where the level of clonal mixing is predicted to be high would enable researchers to gain a better understanding of the relationships between the degree of clonal mixing and soldier investment.

Fortress repair

Nest repair serves as a major example of eusociality within colonies of P. spyrothecae. [1] After prematurely creating an opening in a gall of the same size and presentation of a natural opening, the researchers observed a higher degree of mortality from predation. In this circumstance, there was no evidence of greater investment in soldiers. So, the researchers concluded that the aphids do not adapt to short-term changes in the colony via a reduction of clonal mixing (an increase in soldier reproduction). However, they did note that the holes were repaired by compensatory regrowth from nearby areas of the gall that were either unharmed and/or protected from predation. The researchers found that the soldiers were most likely responsible for the repair, highlighting the expanse of the altruism within this complex soldier caste. [1]

Experiments

W. A. Foster outlined the effectiveness and methods of gall defense. He selected galls and placed them in laboratory conditions so that the predators and number of aphids could be controlled. Anthocoris minki was identified as the primary predator. It was shown that the first instar soldiers alone were responsible for the defense; they were successful in preventing predators from entering and killing them if they did. The sterile-soldiers tend to live closer to the gall opening while the sexually active aphids tend to live farthest from the opening. [13] It was also found that some of the soldiers died in this act. [21] When a ladybird larva ( Adalia bipunctata ) was introduced to the gall, the soldiers would walk onto the predator and insert their stylets into the predators cuticles and would occasionally pierce the cuticle with their hind legs. This experiment was also performed with only non-soldiers and in these scenarios the predator was not killed. This indicates that only the soldiers play a role in gall defense. While attacking a predator, haemolymph oozed out and caused the aphids to stick to predator. It was found that with larger predators, more aphids were stuck after the predator was defeated. The predator survival rate is related to the number of soldiers present; with only 50 soldiers 50% of predators died, and 100 soldiers 90% of predators died. [21]

The selfish gene

The primary explanation for this apparent altruism is explained through kinship; the average degree of mixing in P. spyrothecae was 0.68% which indicates a high relatedness between members of the gall. This now becomes clear that this is a selfish act in order to preserve their genes. This soldier trait has evolved 4 times independently in aphids; this shows the importance and benefits of this trait. Although the soldier aphids protect against predators, they seem to not have any tendencies of defense against immigrants of the same species, even though they are not clones. [21]

Related Research Articles

<span class="mw-page-title-main">Aphid</span> Superfamily of insects

Aphids are small sap-sucking insects and members of the superfamily Aphidoidea. Common names include greenfly and blackfly, although individuals within a species can vary widely in color. The group includes the fluffy white woolly aphids. A typical life cycle involves flightless females giving live birth to female nymphs—who may also be already pregnant, an adaptation scientists call telescoping generations—without the involvement of males. Maturing rapidly, females breed profusely so that the number of these insects multiplies quickly. Winged females may develop later in the season, allowing the insects to colonize new plants. In temperate regions, a phase of sexual reproduction occurs in the autumn, with the insects often overwintering as eggs.

<span class="mw-page-title-main">Hemiptera</span> Order of insects often called true bugs

Hemiptera is an order of insects, commonly called true bugs, comprising over 80,000 species within groups such as the cicadas, aphids, planthoppers, leafhoppers, assassin bugs, bed bugs, and shield bugs. They range in size from 1 mm (0.04 in) to around 15 cm (6 in), and share a common arrangement of piercing-sucking mouthparts. The name "true bugs" is often limited to the suborder Heteroptera.

<span class="mw-page-title-main">Aphididae</span> Family of true bugs

The Aphididae are a very large insect family in the aphid superfamily (Aphidoidea), of the order Hemiptera. These insects suck the sap from plant leaves. Several thousand species are placed in this family, many of which are considered plant/crop pests. They are the family of insects containing most plant virus vectors with the green peach aphid being one of the most prevalent and indiscriminate carriers.

<span class="mw-page-title-main">Eriosomatinae</span> Subfamily of aphids

Woolly aphids are sap-sucking insects that produce a filamentous waxy white covering which resembles cotton or wool. The adults are winged and move to new locations where they lay egg masses. The nymphs often form large cottony masses on twigs, for protection from predators.

<span class="mw-page-title-main">Soybean aphid</span> Species of true bug

The soybean aphid is an insect pest of soybean that is exotic to North America. The soybean aphid is native to Asia. It has been described as a common pest of soybeans in China and as an occasional pest of soybeans in Indonesia, Japan, Korea, Malaysia, the Philippines, and Thailand. The soybean aphid was first documented in North America in Wisconsin in July 2000. Ragsdale et al. (2004) noted that the soybean aphid probably arrived in North America earlier than 2000, but remained undetected for a period of time. Venette and Ragsdale (2004) suggested that Japan probably served as the point of origin for the soybean aphid's North American invasion. By 2003, the soybean aphid had been documented in Delaware, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Michigan, Minnesota, Mississippi, Missouri, Nebraska, New York, North Dakota, Ohio, Pennsylvania, South Dakota, Virginia, West Virginia, and Wisconsin. Together, these states accounted for 89% of the 63,600,000 acres (257,000 km2) of soybean planted in the United States in 2007.

Sipha flava is a species of aphid in the family Aphididae. It is native to North America. Its common name is yellow sugarcane aphid.

<i>Aleurocanthus woglumi</i> Citrus pest from India, now worldwide

Aleurocanthus woglumi is a species of whitefly in the family Aleyrodidae. It is a pest of citrus crops, and is commonly known as the citrus blackfly because of its slate-blue colour. It originated in Asia, but has spread to other parts of the world. The parasitic wasps, Encarsia perplexa and Amitus hesperidum can help control the pest.

Pemphigus betae, also known as the sugarbeet root aphid, is a species of gall-forming aphid that forms galls specifically on the commonly found narrowleaf cottonwood, Populus angustifolia. Sugarbeet root aphids have been found in North America and Europe. They infect sugarbeets, but also other plants like tablebeets and Swiss chard. Their size has been likened to that of a pinhead, and are pale white-yellow in color. Sugarbeet root aphids have soft bodies that are bulbous in shape, with mandibular parts that can pierce and suck and paired abdominal tubes that point backwards, and come in both winged and wingless forms. They are known for their consequential effects on agriculture due to infestation of plants, and efforts to control the pests have proved to be difficult.

<span class="mw-page-title-main">Phylloxeridae</span> Family of true bugs

Phylloxeridae is a small family of plant-parasitic hemipterans closely related to aphids with only 75 described species. This group comprises two subfamilies and 11 genera with one that is fossil. The genus type is Phylloxera. The Phylloxeridae species are usually called phylloxerans or phylloxerids.

<i>Hyalopterus pruni</i> Species of true bug

Hyalopterus pruni, the mealy plum aphid, is an aphid in the superfamily Aphidoidea in the order Hemiptera. It is a true bug and sucks sap from plants.

<i>Schizaphis graminum</i> Species of true bug

The greenbug, or wheat aphid, is an aphid in the superfamily Aphidoidea in the order Hemiptera. It is a true bug and feeds on the leaves of Gramineae (grass) family members.

Cerataphis brasiliensis, the palm aphid, is an aphid in the superfamily Aphidoidea in the order Hemiptera. It is a true bug and sucks sap from plants.

<i>Eriosoma lanigerum</i> Species of true bug

Eriosoma lanigerum, the woolly apple aphid, woolly aphid or American blight, is an aphid in the superfamily Aphidoidea in the order Hemiptera. It is a true bug and sucks sap from plants.

<i>Tetraneura akinire</i> Species of true bug

The oriental grass root aphid, Tetraneura akinire, is an aphid in the superfamily Aphidoidea in the order Hemiptera. It is a true bug and sucks sap from plants.

Victor Frank Eastop FLS FRESB (1924–2012) was a British entomologist. He was born in London, UK. He went to University of Reading but his time as an undergraduate was interrupted by four years in the RAF (1943–47)

Colophina clematis is a species of aphid in the woolly aphid subfamily, Eriosomatinae, native to Japan. This woolly aphid has the distinction of being the first species of aphid to have been identified as having a "soldier" caste. First instar nymphs of this type are able to protect the aphid colony, killing the larvae of predatory ladybirds, hoverflies and the flower bug Anthocoris nemoralis.

<i>Grylloprociphilus</i> Genus of true bugs

Grylloprociphilus is a genus of woolly and gall-making aphids in the family Aphididae. There is at least one described species in Grylloprociphilus, G. imbricator. G. imbricator feeds on American beech.

<i>Phyllaphis fagi</i> Species of true bug

Phyllaphis fagi, the woolly beech aphid, is a species of aphid in the family Aphididae.

<i>Tetraneura ulmi</i> Species of true bug

Tetraneura ulmi, the elm sack gall aphid and also known as a fig gall, is a species of aphid in the family Aphididae. It was described by Carl Linnaeus and named in his Systema Naturae, published in 1758. The mite is found in Asia, Europe and North America, causing abnormal plant growths, known as galls on their primary host, elm trees (Ulmus species). They feed on a secondary host, the roots of various grasses.

Pemphigus obesinymphae is a species of gall-forming aphid. It creates galls on the leaves of Populus fremontii. The species is the only North American aphid known to have soldiers, first instar nymphs that defend the colony.

References

  1. 1 2 3 4 5 Nathan Pike & William Foster (2004). "Fortress repair in the social aphid species Pemphigus spyrothecae". Animal Behaviour . 67 (5): 909–914. doi:10.1016/j.anbehav.2003.08.020. S2CID   53145224.
  2. J. R. Shorter & O. Rueppell (2012). "A review on self-destructive defense behaviors in social insects" (PDF). Insectes Sociaux . 59 (1): 1–10. doi:10.1007/s00040-011-0210-x. S2CID   253634662.
  3. Dunn, J.A. (1960). "The formation of gall by some species of Pemphigus (Homoptera: Aphididae)". Marcellia. 30: 155–167.
  4. von Marilaun, Anton Kerner (1902). The natural history of plants: their forms, growth, reproduction, and distribution, Volume 2. Blackie and Son. p. 535.
  5. Contributors to Aphidsonworldplants.info. "Pemphigus spyrothecae".{{cite web}}: |last= has generic name (help)
  6. Floate, Kevin D. (2010). Gall-Inducing Aphids and Mites Associated with the Hybrid Complex of Cottonwoods, Populus spp. (Salicaceae), on Canada's Grasslands. Vol. Chapter 13. pp. 281–300. doi:10.3752/9780968932148.ch13. ISBN   9780968932148.{{cite book}}: |journal= ignored (help)
  7. Alleyne, E.H.; F.O. Morrison (1974). "Pemphigus spirothecae (Homoptera: Aphidoidea), an aphid which causes spiral galls on poplar in Quebec". The Canadian Entomologist. 106 (11): 1229–1231. doi:10.4039/ent1061229-11. S2CID   83816130.
  8. 1 2 Krischlik, Vera. "Class Insecta" (PDF). University of Minnesota. Archived from the original (PDF) on 2013-12-03.
  9. Jensen, Gary L. Miller, and Manya B. Stoetzel, Andrew S. "Aphidoidea". U.S. National Collection of Aphididae. Archived from the original on 2014-01-03.{{cite web}}: CS1 maint: multiple names: authors list (link)
  10. Aoki, S. "Soldiers of a European gall aphid, Pemphigus spyrothecae (homoptera: aphidoidea): Why do they molt?". J. Ethol.: 97–104.
  11. 1 2 Aoki, S. "Colophina clematis (Homoptera, Pemphigidae), an aphid species with "soldiers."". Kontyu: 276–282.
  12. Ito, Yosiaki (1987). "Are Thick-legged Larvae of Pemphigus spyrothecae 'Soldiers'?". J. Ethol. 5 (2): 210–211. doi:10.1007/bf02349956. S2CID   38295809.
  13. 1 2 3 4 5 6 7 8 Johnson, Paul C.D.; John A. Whitfield; William A. Foster; William Amos (2002). "Clonal mixing in the soldier-producing aphid Pemphigus spyrothecae (Hemiptera: Aphididae)" (PDF). Molecular Ecology. 11 (8): 1525–1531. doi:10.1046/j.1365-294x.2002.01530.x. PMID   12144671. S2CID   24584741.
  14. Nathan Pike & William A. Foster (2008). "The ecology of altruism in a clonal insect". In Judith Korb & Jörgen Heinze (eds.). Ecology of Social Evolution.
  15. Davies, John R. Krebs, Stuart A. West, Nicholas B. (1981). An Introduction to Behavioural Ecology. Oxford: Wiley-Blackwell. pp. 376–377.{{cite book}}: CS1 maint: multiple names: authors list (link)
  16. Foster, William A. (July 23, 1990). "Experimental Evidence for Effective and Altruistic Colony Defence against Natural Predators by Soldiers of the Gall-Forming Aphid Pemphigus spyrothecae (Hemiptera: Pemphigidae)". Behavioral Ecology and Sociobiology. 27 (6): 421–430. doi:10.1007/bf00164069. JSTOR   4600501. S2CID   37559224.
  17. Foster, William A.; Philip K. Rhoden (April 22, 1997). "Soldiers effectively defend aphid colonies against predators in the field". Animal Behaviour. 55 (3): 761–765. doi:10.1006/anbe.1997.0664. PMID   9514674. S2CID   22470715.
  18. Rhoden, Philip K.; William A. Foster (2002). "Soldier behaviour and division of labour in the aphid genus Pemphigus (Hemiptera, Aphididae)". Insectes Sociaux. 49 (3): 257–263. doi:10.1007/s00040-002-8311-1. S2CID   24575681.
  19. Rhoden, Philip K. (1997). The evolution of social behaviour in aphids of the genus Pemphigus. Cambridge: University of Cambridge.
  20. Stern, DL; WA Foster (1996). "The evolution of soldiers in aphids". Biological Reviews. 71 (1): 27–29. doi:10.1111/j.1469-185X.1996.tb00741.x. PMID   8603120. S2CID   8991755.
  21. 1 2 3 W. A. Foster (1990). "Experimental evidence for effective and altruistic colony defence against natural predators by soldiers of the gall-forming aphid Pemphigus spyrothecae (Hemiptera : Pemphigidae)". Behavioral Ecology and Sociobiology . 27 (6): 421–430. doi:10.1007/BF00164069. JSTOR   4600501. S2CID   37559224.