Persephonella marina | |
---|---|
Scientific classification | |
Domain: | |
Phylum: | |
Class: | |
Order: | |
Family: | |
Genus: | |
Species: | P. marina |
Binomial name | |
Persephonella marina Götz et al. 2002 | |
Persephonella marina is a Gram-negative, rod shaped bacteria that is a member of the Aquificota phylum. [1] Stemming from Greek, the name Persephonella is based upon the mythological goddess Persephone. Marina stems from a Latin origin, meaning "belonging to the sea". It is a thermophile with an obligate chemolithoautotrophic metabolism. [1] Growth of P. marina can occur in pairs or individually, but is rarely seen aggregating in large groups. [1] The organism resides on sulfidic chimneys in the deep ocean and has never been documented as a pathogen. [1]
Persephonella marina was first isolated in 1999 using MSH medium, a medium containing 29 g NaCl, 2 g NaOH, 0.5 g KCl, 1.36 g MgCl2•6H2O, 7 g MgSO4•7H2O, 2 g Na2S2O3•5H2O, 0.4 g CaCl2•2H2O, 0.2 g NH4Cl, 0.3 g K2HPO4•3H2O and 10 ml of a trace-element stock solution, with a gas phase containing twenty parts carbon dioxide, one part oxygen, and twenty six parts hydrogen gas. [1] Initial isolation was provided by a sample obtained from a depth of 2,507 meters on a sulfidic chimney. This particular sulfidic chimney was named "Q-Vent" and is located at a latitude of 9° North and a longitude of 104° West in a region called the East Pacific Rise. [1] The environment in which P. marina was obtained was too harsh for humans due to the excessive temperature (133 °C with spikes up to 170 °C) and extreme pressure. Due to these harsh conditions a submarine was used for extraction of the samples. [1]
Persephonella marina has a genome size of 1.9 mega (10^9) base pairs with 2,048 encoded genes. The organism contains a GC content of 37%. [2] This is unusually low for thermophilic organisms which typically contain high amounts of GC bonds to prevent DNA denaturation. The organism's closest phylogenetic neighbor was isolated under the same study and was named Persephonella guaymasensis . It shares 96% of its genome with P. marina. [1] Other similar genomes include: Hydrogenothermus marinus (94.5% similarity), [1] and Aquifex pyrophilius (85% similarity). [1]
Persephonella marina is an obligate chemolithoautotroph. [1] It utilizes three primary electron donors: elemental sulfur (S°), hydrogen gas (H2), and thiosulfate (S2O32−). [1] Oxygen and nitrate act as electron acceptors for P. marina. [1] In the lab, when P. marina was exposed to high amounts of elemental sulfur, the organism produced an excess of sulfide. [1] When exposed to microaerophilic conditions as found near deep sea hydrothermal vents, P. marina was able to perform aerobic respiration. [1] Oxygen is not the primary electron acceptor and can only be utilized when exposed to oxygen in this microaerophilic environment. [1]
Persephonella marina is a thermophilic organism that grows optimally in a temperature range of 55 to 80 degrees Celsius. [1] The organism does show the ability to survive at hyperthermophilic conditions as it was first isolated in water temperatures of 133 degrees Celsius. [1] P. Marina does not have the ability to form spores, highlighting the presence of a process that keeps DNA and essential proteins stable at extremely high temperatures commonly found near hydrothermal vents. [1] Once cultured the organism was found to be able to grow in halophilic conditions between 2 and 4 1/2 percent NaCl but grows optimally at 2 1/2 percent NaCl. [1] P. Marina possesses a wide range of pH in which it can grow, spanning from 4.7 to 7.5. In optimal growth conditions, the doubling time for P. Marina is around 5 hours. [1]
Persephonella marina was used as a model organism for the characterization of genes and enzymes for the synthesis of glucosylglycerate found for the first time in a thermophile. [3] Glucosylglycerate protects the microbe from thermal stresses and helps in adaptation to starvation conditions. [4] This is of great importance to scientists who wish to study extremophiles. This solute is also important in the advancement of biotechnology. [4] When tested in lab, glucosylglycerate increased the melting temperature of essential enzymes in basic metabolic pathways. [4] It has an effect on a microbe's ability to withstand high-pressure environments. [4] This rare solute has only been found in a few other halophilic bacteria and one Archaeon, but has never been encountered in a hyperthermophile such as P. marina. [4] It is also worth noting that P. marina has led to the discovery of α(1,6)glucosyl-α-(1,2)glucosylglycerate by proton NMR and is still currently under study. [4] Both of these solutes are disaccharide heterosides which are extremely rare in thermophiles. [4] Both are important in osmotic adaptation in microbes as well. [4] With many questions to be answered about these two solutes, further research could benefit biotechnology in application to production of things such as food preservatives and textiles. Also, for scientists who are looking to further answer why and how hyperthermophiles survive, these two solutes could help fill in the missing pieces of the puzzle.
A thermophile is an organism—a type of extremophile—that thrives at relatively high temperatures, between 41 and 122 °C. Many thermophiles are archaea, though they can be bacteria. Thermophilic eubacteria are suggested to have been among the earliest bacteria.
A mesophile is an organism that grows best in moderate temperature, neither too hot nor too cold, with an optimum growth range from 20 to 45 °C. The term is mainly applied to microorganisms. Organisms that prefer extreme environments are known as extremophiles. Mesophiles have diverse classifications, belonging to two domains: Bacteria, Archaea, and to kingdom Fungi of domain Eucarya. Mesophiles belonging to the domain Bacteria can either be gram-positive or gram-negative. Oxygen requirements for mesophiles can be aerobic or anaerobic. There are three basic shapes of mesophiles: coccus, bacillus, and spiral.
In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules and nutrients into organic matter using the oxidation of inorganic compounds or ferrous ions as a source of energy, rather than sunlight, as in photosynthesis. Chemoautotrophs, organisms that obtain carbon from carbon dioxide through chemosynthesis, are phylogenetically diverse. Groups that include conspicuous or biogeochemically-important taxa include the sulfur-oxidizing gamma and epsilon proteobacteria, the Aquificae, the methanogenic archaea and the neutrophilic iron-oxidizing bacteria.
A hydrothermal vent is a fissure on the seafloor from which geothermally heated water discharges. Hydrothermal vents are commonly found near volcanically active places, areas where tectonic plates are moving apart at spreading centers, ocean basins, and hotspots. Hydrothermal deposits are rocks and mineral ore deposits formed by the action of hydrothermal vents.
Aquifex is a bacterial genus, belonging to phylum Aquificota. There is one species of Aquifex with a validly published name – A. pyrophilus – but "A. aeolicus" is sometimes considered as species though it has no standing as a name given it has not been validly or effectively published. Aquifex spp. are extreme thermophiles, growing best at temperature of 85 °C to 95 °C. They are members of the Bacteria as opposed to the other inhabitants of extreme environments, the Archaea.
"Aquifex aeolicus" is a chemolithoautotrophic, Gram-negative, motile, hyperthermophilic bacterium. "A. aeolicus" is generally rod-shaped with an approximate length of 2.0-6.0μm and a diameter of 0.4-0.5μm. "A. aeolicus" is neither validly nor effectively published and, having no standing in nomenclature, should be styled in quotation marks. It is one of a handful of species in the Aquificota phylum, an unusual group of thermophilic bacteria that are thought to be some of the oldest species of bacteria, related to filamentous bacteria first observed at the turn of the century. "A. aeolicus" is also believed to be one of the earliest diverging species of thermophilic bacteria. "A. aeolicus" grows best in water between 85 °C and 95 °C, and can be found near underwater volcanoes or hot springs. It requires oxygen to survive but has been found to grow optimally under microaerophilic conditions. Due to its high stability against high temperature and lack of oxygen, "A. aeolicus" is a good candidate for biotechnological applications as it is believed to have potential to be used as hydrogenases in an attractive H2/O2 biofuel cell, replacing chemical catalysts. This can be useful for improving industrial processes.
Sulfur-reducing bacteria are microorganisms able to reduce elemental sulfur (S0) to hydrogen sulfide (H2S). These microbes use inorganic sulfur compounds as electron acceptors to sustain several activities such as respiration, conserving energy and growth, in absence of oxygen. The final product or these processes, sulfide, has a considerable influence on the chemistry of the environment and, in addition, is used as electron donor for a large variety of microbial metabolisms. Several types of bacteria and many non-methanogenic archaea can reduce sulfur. Microbial sulfur reduction was already shown in early studies, which highlighted the first proof of S0 reduction in a vibrioid bacterium from mud, with sulfur as electron acceptor and H2 as electron donor. The first pure cultured species of sulfur-reducing bacteria, Desulfuromonas acetoxidans, was discovered in 1976 and described by Pfennig Norbert and Biebel Hanno as an anaerobic sulfur-reducing and acetate-oxidizing bacterium, not able to reduce sulfate. Only few taxa are true sulfur-reducing bacteria, using sulfur reduction as the only or main catabolic reaction. Normally, they couple this reaction with the oxidation of acetate, succinate or other organic compounds. In general, sulfate-reducing bacteria are able to use both sulfate and elemental sulfur as electron acceptors. Thanks to its abundancy and thermodynamic stability, sulfate is the most studied electron acceptor for anaerobic respiration that involves sulfur compounds. Elemental sulfur, however, is very abundant and important, especially in deep-sea hydrothermal vents, hot springs and other extreme environments, making its isolation more difficult. Some bacteria – such as Proteus, Campylobacter, Pseudomonas and Salmonella – have the ability to reduce sulfur, but can also use oxygen and other terminal electron acceptors.
In taxonomy, Staphylothermus is a genus of the Desulfurococcaceae.[1]
Sulfurimonas is a bacterial genus within the class of Campylobacterota, known for reducing nitrate, oxidizing both sulfur and hydrogen, and containing Group IV hydrogenases. This genus consists of four species: Sulfurimonas autorophica, Sulfurimonas denitrificans, Sulfurimonas gotlandica, and Sulfurimonas paralvinellae. The genus' name is derived from "sulfur" in Latin and "monas" from Greek, together meaning a “sulfur-oxidizing rod”. The size of the bacteria varies between about 1.5-2.5 μm in length and 0.5-1.0 μm in width. Members of the genus Sulfurimonas are found in a variety of different environments which include deep sea-vents, marine sediments, and terrestrial habitats. Their ability to survive in extreme conditions is attributed to multiple copies of one enzyme. Phylogenetic analysis suggests that members of the genus Sulfurimonas have limited dispersal ability and its speciation was affected by geographical isolation rather than hydrothermal composition. Deep ocean currents affect the dispersal of Sulfurimonas spp., influencing its speciation. As shown in the MLSA report of deep-sea hydrothermal vents Campylobacterota, Sulfurimonas has a higher dispersal capability compared with deep sea hydrothermal vent thermophiles, indicating allopatric speciation.
Thermoplasma volcanium is a moderate thermoacidophilic archaea isolated from acidic hydrothermal vents and solfatara fields. It contains no cell wall and is motile. It is a facultative anaerobic chemoorganoheterotroph. No previous phylogenetic classifications have been made for this organism. Thermoplasma volcanium reproduces asexually via binary fission and is nonpathogenic.
Thermotoga elfii is a rod-shaped, glucose-fermenting bacterium. The type strain of T. elfii is SEBR 6459T. The genus Thermotoga was originally thought to be strictly found surrounding submarine hydrothermal vents, but this organism was subsequently isolated in African oil wells in 1995. A protective outer sheath allows this microbe to be thermophilic. This organism cannot function in the presence of oxygen making it strictly anaerobic. Some research proposes that the thiosulfate-reducing qualities in this organism could lead to decreased bio-corrosion in oil equipment in industrial settings.
This article discusses the Unique properties of hyperthermophilic archaea. Hyperthermophiles are organisms that can live at temperatures ranging between 70 and 125 °C. They have been the subject of intense study since their discovery in 1977 in the Galapagos Rift. It was thought impossible for life to exist at temperatures as great as 100 °C until Pyrolobus fumarii was discovered in 1997. P. fumarii is a unicellular organism from the domain Archaea living in the hydrothermal vents in black smokers along the Mid-Atlantic Ridge. These organisms can live at 106 °C at a pH of 5.5. To get energy from their environment these organisms are facultatively aerobic obligate chemolithoautotrophs, meaning these organisms build biomolecules by harvesting carbon dioxide (CO2) from their environment by using hydrogen (H2) as the primary electron donor and nitrate (NO3−) as the primary electron acceptor. These organisms can even survive the autoclave, which is a machine designed to kill organisms through high temperature and pressure. Because hyperthermophiles live in such hot environments, they must have DNA, membrane, and enzyme modifications that help them withstand intense thermal energy. Such modifications are currently being studied to better understand what allows an organism or protein to survive such harsh conditions. By learning what lets these organisms survive such harsh conditions, researchers can better synthesize molecules for industry that are harder to denature.
Persephonella guaymasensis is a thermophilic, hydrogen-oxidizing microaerophile first isolated from a deep-sea hydrothermal vent. It is strictly chemolithoautotrophic, microaerophilic, motile, 2-4 micrometres in size, rod-shaped, Gram-negative and non-sporulating. Its type strain is EX-H2T.
Thermococcus barophilus is a barophilic and hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. It is anaerobic and sulfur-metabolising, with type strain MPT.
Balnearium lithotrophicum is a species of bacterium described in 2003 and classified as belonging to the Aquificota.
Desulfurobacterium atlanticum is a thermophilic, anaerobic and chemolithoautotrophic bacterium from the family Aquificaceae. In 2006 it was isolated from marine hydrothermal systems and proposed to become a new bacterial species.
Aciduliprofundum boonei is an obligate thermoacidophilic archaea belonging to the phylum Euryarchaeota. Isolated from acidic hydrothermal vent environments, A. boonei is the first cultured representative of a biogeochemically significant clade of thermoacidophilic archaea known as the “Deep-Sea Hydrothermal Vent Euryarchaeota 2 (DHVE2)”.
Caloranaerobacter azorensis is a Gram-negative, thermophilic, anaerobic, chemoorganotrophic and motile bacterium from the genus of Caloranaerobacter which has been isolated from a deep-sea hydrothermal vent from the Lucky Strike hydrothermal vent site from the Mid-Atlantic Ridge.
The hydrothermal vent microbial community includes all unicellular organisms that live and reproduce in a chemically distinct area around hydrothermal vents. These include organisms in the microbial mat, free floating cells, or bacteria in an endosymbiotic relationship with animals. Chemolithoautotrophic bacteria derive nutrients and energy from the geological activity at Hydrothermal vents to fix carbon into organic forms. Viruses are also a part of the hydrothermal vent microbial community and their influence on the microbial ecology in these ecosystems is a burgeoning field of research.
Thermodesulfobacterium hveragerdense is a bacterial species belonging to genus Thermodesulfobacterium, which are thermophilic sulfate-reducing bacteria. This species is found in aquatic areas of high temperature, and lives in freshwater like most, but not all Thermodesulfobacterium species It was first isolated from hotsprings in Iceland.