Phenylsilane

Last updated
Phenylsilane
skeletal formula of phenylsilane Phenylsilane.png
skeletal formula of phenylsilane
ball-and-stick model of the phenylsilane molecule Phenylsilane-3D-vdW.png
ball-and-stick model of the phenylsilane molecule
Names
Preferred IUPAC name
Phenylsilane
Other names
Silylbenzene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.010.703 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 211-772-5
PubChem CID
UNII
  • InChI=1S/C6H8Si/c7-6-4-2-1-3-5-6/h1-5H,7H3 X mark.svgN
    Key: PARWUHTVGZSQPD-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C6H8Si/c7-6-4-2-1-3-5-6/h1-5H,7H3
    Key: PARWUHTVGZSQPD-UHFFFAOYAT
  • c1ccccc1[SiH3]
Properties
C6H8Si
Molar mass 108.215 g·mol−1
AppearanceColorless liquid
Density 0.878 g/cm3
Boiling point 119 to 121 °C (246 to 250 °F; 392 to 394 K)
Hydrolyzes
Hazards [1]
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg
Danger
H225, H261, H302, H315, H319, H332, H335
P210, P301+P312+P330, P302+P353, P304+P340+P312, P305+P351+P338
Safety data sheet (SDS) MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Phenylsilane, also known as silylbenzene, a colorless liquid, is one of the simplest organosilanes with the formula C 6 H 5 SiH3. It is structurally related to toluene, with a silyl group replacing the methyl group. Both of these compounds have similar densities and boiling points due to these similarities. Phenylsilane is soluble in organic solvents.

Contents

Synthesis and reactions

Phenylsilane is produced in two steps from Si(OEt)4. In the first step, phenylmagnesium bromide is added to form Ph−Si(OEt)3 via a Grignard reaction. Reduction of the resulting Ph−Si(OEt)3 product with LiAlH4 affords phenylsilane. [2]

Ph−MgBr + Si(OEt)4 → Ph−Si(OEt)3 + MgBr(OEt)
4 Ph−Si(OEt)3 + 3 LiAlH4 → 4 Ph−SiH3 + 3 LiAl(OEt)4

Uses

Phenylsilane can be used to reduce tertiary phosphine oxides to the corresponding tertiary phosphine.

P(CH3)3O + PhSiH3 → P(CH3)3 + PhSiH2OH

The use of phenylsilane proceeds with retention of configuration at the phosphine. For example, cyclic chiral tertiary phosphine oxides can be reduced to cyclic tertiary phosphines. [3]

Phenylsilane combines with caesium fluoride to give the ate complex [PhSiFH3]. This species functions as a hydride donor, reducing 4-oxazolium salts to 4-oxazolines. [4]

Phenylsilane has been used as a hydride donor in synthetic enzymes. [5]

Related Research Articles

In chemistry, a hydride is formally the anion of hydrogen (H), a hydrogen atom with two electrons. The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

<span class="mw-page-title-main">Gilman reagent</span> Class of chemical compounds

A Gilman reagent is a lithium and copper (diorganocopper) reagent compound, R2CuLi, where R is an alkyl or aryl. These reagents are useful because, unlike related Grignard reagents and organolithium reagents, they react with organic halides to replace the halide group with an R group (the Corey–House reaction). Such displacement reactions allow for the synthesis of complex products from simple building blocks.

<span class="mw-page-title-main">Lithium aluminium hydride</span> Chemical compound

Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li[AlH4] or LiAlH4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic synthesis, especially for the reduction of esters, carboxylic acids, and amides. The solid is dangerously reactive toward water, releasing gaseous hydrogen (H2). Some related derivatives have been discussed for hydrogen storage.

<span class="mw-page-title-main">Phosphonium</span> Family of polyatomic cations containing phosphorus

In chemistry, the term phosphonium describes polyatomic cations with the chemical formula PR+
4
. These cations have tetrahedral structures. The salts are generally colorless or take the color of the anions.

<span class="mw-page-title-main">Triphenylphosphine</span> Chemical compound

Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is widely used in the synthesis of organic and organometallic compounds. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin chemistry is the scientific study of the synthesis and properties of organotin compounds or stannanes, which are organometallic compounds containing tin carbon bonds. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

<span class="mw-page-title-main">Hydroperoxide</span> Class of chemical compounds

Hydroperoxides or peroxols are compounds of the form ROOH, which contain the hydroperoxy functional group (–OOH). The hydroperoxide anion and the neutral hydroperoxyl radical (HOO·) consist of an unbond hydroperoxy group. When R is organic, the compounds are called organic hydroperoxides. Such compounds are a subset of organic peroxides, which have the formula ROOR. Organic hydroperoxides can either intentionally or unintentionally initiate explosive polymerisation in materials with unsaturated chemical bonds.

<span class="mw-page-title-main">1,2-Bis(diphenylphosphino)ethane</span> Chemical compound

1,2-Bis(diphenylphosphino)ethane (dppe) is an organophosphorus compound with the formula (Ph2PCH2)2 (Ph = phenyl). It is a commonly used bidentate ligand in coordination chemistry. It is a white solid that is soluble in organic solvents.

<span class="mw-page-title-main">Indium(III) chloride</span> Chemical compound

Indium(III) chloride is the chemical compound with the formula InCl3. This salt is a white, flaky solid with applications in organic synthesis as a Lewis acid. It is also the most available soluble derivative of indium. This is one of three known indium chlorides.

<span class="mw-page-title-main">Schwartz's reagent</span> Chemical compound

Schwartz's reagent is the common name for the organozirconium compound with the formula (C5H5)2ZrHCl, sometimes called zirconocene hydrochloride or zirconocene chloride hydride, and is named after Jeffrey Schwartz, a chemistry professor at Princeton University. This metallocene is used in organic synthesis for various transformations of alkenes and alkynes.

<span class="mw-page-title-main">Organocopper chemistry</span> Compound with carbon to copper bonds

Organocopper chemistry is the study of the physical properties, reactions, and synthesis of organocopper compounds, which are organometallic compounds containing a carbon to copper chemical bond. They are reagents in organic chemistry.

Organophosphines are organophosphorus compounds with the formula PRnH3−n, where R is an organic substituent. These compounds can be classified according to the value of n: primary phosphines (n = 1), secondary phosphines (n = 2), tertiary phosphines (n = 3). All adopt pyramidal structures. Organophosphines are generally colorless, lipophilic liquids or solids. The parent of the organophosphines is phosphine (PH3).

Hydrosilanes are tetravalent silicon compounds containing one or more Si-H bond. The parent hydrosilane is silane (SiH4). Commonly, hydrosilane refers to organosilicon derivatives. Examples include phenylsilane (PhSiH3) and triethoxysilane ((C2H5O)3SiH). Polymers and oligomers terminated with hydrosilanes are resins that are used to make useful materials like caulks.

<span class="mw-page-title-main">Tributyltin hydride</span> Chemical compound

Tributyltin hydride is an organotin compound with the formula (C4H9)3SnH. It is a colorless liquid that is soluble in organic solvents. The compound is used as a source of hydrogen atoms in organic synthesis.

<span class="mw-page-title-main">Group 2 organometallic chemistry</span>

Group 2 organometallic chemistry refers to the chemistry of compounds containing carbon bonded to any group 2 element. By far the most common group 2 organometallic compounds are the magnesium-containing Grignard reagents which are widely used in organic chemistry. Other organmetallic group 2 compounds are rare and are typically limited to academic interests.

Phenylphosphine is an organophosphorus compound with the chemical formula C6H5PH2. It is the phosphorus analog of aniline. Like other primary phosphines, phenylphosphine has an intense penetrating odor and is highly oxidizable. It is mainly used as a precursor to other organophosphorus compounds. It can function as a ligand in coordination chemistry.

Organorhenium chemistry describes the compounds with Re−C bonds. Because rhenium is a rare element, relatively few applications exist, but the area has been a rich source of concepts and a few useful catalysts.

<span class="mw-page-title-main">Diethylphosphite</span> Chemical compound

Diethyl phosphite is the organophosphorus compound with the formula (C2H5O)2P(O)H. It is a popular reagent for generating other organophosphorus compounds, exploiting the high reactivity of the P-H bond. Diethyl phosphite is a colorless liquid. The molecule is tetrahedral.

Dibutylmagnesium is an organometallic chemical compound of magnesium. Its chemical formula is C
8
H
18
Mg
. Dibutylmagnesium is a chemical compound from the group of organomagnesium compounds. The pure substance is a waxy solid. Commercially, it is marketed as solution in heptane.

<span class="mw-page-title-main">Organoberyllium chemistry</span> Organoberyllium Complex in Main Group Chemistry

Organoberyllium chemistry involves the synthesis and properties of organometallic compounds featuring the group 2 alkaline earth metal beryllium (Be). The area remains understudied, relative to the chemistry of other main-group elements, because although metallic beryllium is relatively unreactive, its dust causes berylliosis and compounds are toxic. Organoberyllium compounds are typically prepared by transmetallation or alkylation of beryllium chloride.

References

  1. "Phenylsilane".
  2. Minge, O.; Mitzel, N. W.; and Schmidbaur, H. Synthetic Pathways to Hydrogen-Rich Polysilylated Arenes from Trialkoxysilanes and Other Precursors. Organometallics 2002, 21, 680-684. doi : 10.1021/om0108595
  3. Weber, W. P. Silicon Reagents for Organic Synthesis. Springer-Verlag: Berlin, 1983. ISBN   0-387-11675-3.
  4. Fleck, T. J. (2001). "Phenylsilane–Cesium Fluoride". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rp101. ISBN   0471936235.
  5. Hoffnagle, Alexander M.; Tezcan, F. Akif (2023-06-23). "Atomically Accurate Design of Metalloproteins with Predefined Coordination Geometries". Journal of the American Chemical Society. doi:10.1021/jacs.3c04047. ISSN   0002-7863. PMC   10439731 .