Phrynocephalus vlangalii

Last updated

Phrynocephalus vlangalii
Phrynocephalus vlangalii at Beijing Zoo.JPG
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Order: Squamata
Suborder: Iguania
Family: Agamidae
Genus: Phrynocephalus
Species:
P. vlangalii
Binomial name
Phrynocephalus vlangalii
Strauch, 1876

Phrynocephalus vlangalii, also known as the Qinghai toad-headed agama, the Ching Hai toadhead agama, the Pylzow's toadhead agama, or gecko toadhead agama, is a species of viviparous agamid lizard endemic to the Tibetan Plateau in China. [2] This lizard lives in burrows at high elevations of 2,000 to 4,600 meters. It is also known for its aggression, especially between females during mating season since females usually only have one mate. [3] [4] P. vlangalii curls its tail and shows a patch on its underbelly as defense displays against conspecifics. [5] This lizard also has a variety of gut microbiota that help perform metabolic and biological functions depending on the altitude at which the lizard lives. [6]

Contents

Description

As a small lizard, P. vlangalii can grow up to 80 mm from snout to vent. [7] Sexual dimorphism is present in this species and most evident among adults. Adult males tend to have larger heads and tail lengths while adult females have larger bodies and abdomen lengths. [8] Males and females are also distinguishable by their tail-tip badges: males have black tail-tips and females have orange tail-tips. [4] Both males and females display their tail-tip badges and underbelly patches as a method of defending their territory against rival lizards. [5] There is a positive correlation between a lizard's body size and temperature, air pressure, and active season length, demonstrated by differences in the body size of P. vlangalii among different elevations in the Tibetan plateau. This is because as the elevation increases, air temperature and pressure decrease. To avoid hypoxia, or lack of oxygen to the body, these lizards have smaller bodies to help maintain a constant body temperature. [9]

Habitat and Distribution

P. vlangalii creates burrows about 70 cm into sand to act as refuge against predators. [4] Burrows greater than 74 cm are deep enough to protect against low temperatures. [10] Because P. vlangalii is found on a plateau, it is adapted to an arid and semi-arid environment with sparse vegetation located 2000–4600 meters high. [7] P. vlangalii's preference for desert habitats makes it a good indicator species for desertification of grassland areas. [10] This lizard is endemic to the Qinghai-Tibetan Plateau in China. The Tibetan plateau is known for its high altitude, cold temperatures, and dry atmosphere, which explains the lizard's burrow digging behavior. P. vlangalii's range can also stretch north to the southern Arjin mountains and the Gansu province in China. Its southern range reaches the northern Tanggula mountains and the southern part of the Yellow River. [11]

Habitat Loss

P. vlangalii is one of the most common lizard species in its native range but its habitat is experiencing some loss for a variety of reasons. [12] In central and southwestern Mongolia, as well as other parts of Asia, P. vlangalii is losing parts of its habitat to both human interference and climate change. [12] These losses in habitats, particularly around the periphery of a range, can lead to changes in the behavior or other phenotypic characteristics of the species. [12]

P. vlangalii is endemic to the Tibetan Plateau Topografic map of Tibetan Plateau.png
P. vlangalii is endemic to the Tibetan Plateau

Home range of the organism

P. vlangalii lives in high densities where each lizard has its own burrow, but its overall home ranges overlap with those of others. [13] These lizards guard these home ranges as they are used as a refuge from predators. These lizards do not migrate.

Population structure, speciation, and phylogeny

A closely related Phrynocephalus guttatus coiling its tail Phrynocephalus guttatus-animal-reader.ru 2.jpg
A closely related Phrynocephalus guttatus coiling its tail

The eastern range of viviparous lizards is home to Phrynocephalus guinanensis, Phrynocephalus putjatia, and Phrynocephalus vlangalii. These species are closely related but are subject to controversies regarding how they should be classified. According to Hu et al., there is more morphological differentiation between these three species than there is genetic differentiation, likely due to adaptation to each species’ habitat. Habitat differentiation and contact between the species likely occurred due to the uplift or rising of the Qinghai-Tibetan plateau millions of years ago, when many areas became arid and dry. There is also additional evidence of possible historical hybridization events between these three species, such as shared haplotypes and high gene flow levels. [14]

In 1909, Bedriaga et al. listed Phrynocephalus vlangalii parva, Phrynocephalus vlangalii nanschanica, and Phrynocephalus vlangalii pylzowi as subspecies of Phrynocephalus vlangii, or the Qinghai toad-headed agama. More recently, Phrynocephalus hongyuanensis was debated surrounding it being considered a potential subspecies but was ultimately placed in the main clade. [11] There are two subspecies considered under Phrynocephalus vlangalii: Phrynocephalus vlangalii hongyuanensis and Phrynocephalus vlangalii vlangalii. [2]

Territoriality

Male territories tend to overlap more with females than with other males. Females not only avoid each other, but they also show each other aggression. They are more likely to overlap with males than with other females. Males and females are aggressive but females are notably more aggressive with each other. Lizards separately burrow, based on gender. [4]

Since these lizards live in burrows, the entrance to their burrow acts as the center of their territory and is actively defended. Males and females each have their own burrow, so they equally defend their own territory by using their tails to signal to rivals to not invade their space. They do this by coiling and lifting their tail, showing the tail-tip badge that is black among males and orange among females, as well as pushing-up on their legs to lift their belly from the ground in order to also display the patch of color located there. [5] [13]

Males were observed to coil their tails faster than females and the display of lashing one's tail was only found among males. This display was the quickest when a male faced another male. Besides tail displays, females also chase away their rivals. Tail coiling is most pronounced (tight and high) when an adult faces another adult, rather than when facing a juvenile. Juveniles tend to mainly use the display of waving their tail as a signal of defense rather than coiling or lashing. [13] A positive correlation between tail length and territory size has also been observed. [15]

Males employ resident and floater tactics. Residents are usually found in the same small areas to defend their territory against rivals by displaying their tails and patches and chasing conspecifics. Floaters do not occupy areas, do not defend territory, and are thought to display in a different manner than residents to signal that they are of a different social status than residents. [5]

Reproduction and Life cycle

Courtship occurs in May and females give birth to their young from mid-July to late August. [7] Most lizards grow faster in warmer environmental conditions because they are ectothermic animals. However, these lizards grow faster at higher elevations. As the elevation in which the lizards live increases, fewer, yet larger offspring are born. Therefore, these lizards may be growing faster at higher elevations because they are hatching at larger sizes and with more resources. Brood size ranges from 2-6 offspring. [8] However, number of offspring and the mean mass of the offspring is positively correlated with female snout-vent-length. [16]

A common garden experiment conducted by Lu et al. demonstrated that difference in growth rate between low-elevation P. vlangalii and high elevation P. vlangalii may be due to developmental plasticity rather than genetics. The lizards that were born and grew up at the highest elevations on the Tibetan plateau tended to grow faster and reach larger sizes as adults compared to those in relatively lower elevations. When both types of lizards were brought into a lab, the young lizards had similar growth rates, suggesting the difference in growth rate and adult size in the field is due to the lizards adapting to survive in their different habitats. Higher abundance of prey at higher elevation is likely associated for these differences, since smaller lizards born at high altitudes have higher growth rates than lizards born larger at a lower elevation if there is abundant food supply. [7]

Mating

There is limited intersexual aggression between males and females. Female-female aggression is often observed to defend territory, resources and maximizing reproductive success.

Female/Female interactions

These lizards participate in female-female aggression when there is competition for mates since the males would be useful for reproduction. Since there are more females than males among this species, female-female intrasexual aggression serves to defend territory and resources (males have been observed to help females defend their territory and defend against other males hoping to forcefully mate with females, but females themselves will display to other females to protect their burrows). Forced mating by floater males can be dangerous for females, since females have died from mating multiple times. Resident females, or females that tend to stay in one location, are faster to display their coiled tail and belly patch to a rival when there is a neighbor male nearby. They signal faster with a male present as well, but only during mating season. Female-female aggression is also present outside of mating season. [3]

Female/Male interactions

These lizards are viviparous, meaning females give birth to live young. Females tend to have one mate since multiple matings, especially forced matings, can be deadly. [3] Female lizards may also guard their mates. Since females are very aggressive towards other females and do not overlap their territories with those of other females, it is difficult for males to defend potential multiple mates. [4] Because these lizards do not migrate, they tend to associate in groups that are more kin-related.

Social behavior

P. vlangalii heavily rely on burrow for protection from predation and harsh weather. Burrows are important for the survival of these lizards both during the summer (when they are most active and there are many predators) and winter (against the harsh cold). Adult lizards occupy separate burrows, and young juveniles around one year old mostly live in abandoned burrows and occasionally stay in the burrows of their parents. However, these instances are not common or numerous enough to be significant. Male adults’ territories tend to overlap more with adult females than with other males, especially males that have a better, healthier body condition. Similarly, adult females’ territories overlap more with males than with other females.

Each lizard tends to stay in their one burrow rather than move around in search for new ones. Some will dwell in two or three burrows. [4]

Microbiome

Among three populations of P. vlangalii that lived at different altitudes, the most abundant intestinal microbiota were bacteroidetes, firmicutes, and proteobacteria. As elevation increased, verrucomicrobia, the fourth most abundant microbiota found, decreased and bacteroides increased. Each microbiota in the lizard's gut is important for biological functions such as nutrient metabolism. The variation in gut microbiome of P. vlangalii allows them to conserve energy by reducing digestive energy expenditure at higher elevations. The types and amount of each micro biota found are affected by the geography and climate the lizard lives in. The lizards used in this study live at altitudes of 2,900 m, 3,338 m, and 4,250 m. [6]

Related Research Articles

<span class="mw-page-title-main">Agama (lizard)</span> Genus of reptiles

Agama is a genus of small-to-moderate-sized, long-tailed, insectivorous Old World lizards. The genus Agama includes at least 37 species in Africa, especially sub-Saharan Africa, where most regions are home to at least one species. Eurasian agamids are largely assigned to genus Laudakia. The various species differ in size, ranging from about 12 to 30 centimetres in length, when fully grown.

<i>Phrynocephalus</i> Genus of lizards

Phrynocephalus is a genus which includes 33 species of small and medium-sized agamid lizards, commonly called toadhead agamas or toad-headed agamas, that inhabit open arid and semiarid environments of Asia and Eastern Europe. The systematics of this genus are very complicated with many controversial points of view about the unclear phylogeny of this group. All representatives of this genus have adopted the so-called "sit and wait" hunting strategy and they actively use visual orientation when watching for food. In general, the ecological niche and role of Phrynocephalus species in lizard communities of arid environments of Asia are poorly studied, but seem to be similar to that of Phrynosoma, Cophosaurus, Holbrookia, Uta, and Sceloporus in the New World, as well as Moloch in Australia.

<span class="mw-page-title-main">Territory (animal)</span> Area a wild animal consistently defends

In ethology, territory is the sociographical area that an animal consistently defends against conspecific competition using agonistic behaviors or real physical aggression. Animals that actively defend territories in this way are referred to as being territorial or displaying territorialism.

<span class="mw-page-title-main">Thorny devil</span> Species of lizard

The thorny devil, also known commonly as the mountain devil, thorny lizard, thorny dragon, and moloch, is a species of lizard in the family Agamidae. The species is endemic to Australia. It is the sole species in the genus Moloch. It grows up to 21 cm (8.3 in) in total length, with females generally larger than males.

<span class="mw-page-title-main">Common collared lizard</span> Species of reptile

The common collared lizard, also commonly called eastern collared lizard, Oklahoma collared lizard, yellow-headed collared lizard, and collared lizard, is a North American species of lizard in the family Crotaphytidae. The common name "collared lizard" comes from the lizard's distinct coloration, which includes bands of black around the neck and shoulders that look like a collar. Males can be very colorful, with blue green bodies, yellow stripes on the tail and back, and yellow orange throats. There are five recognized subspecies.

<span class="mw-page-title-main">Tibetan fox</span> Species of true fox

The Tibetan fox, also known as the Tibetan sand fox, is a species of true fox endemic to the high Tibetan Plateau, Ladakh plateau, Nepal, China, Sikkim, and Bhutan, up to elevations of about 5,300 m (17,400 ft). It is listed as Least Concern in the IUCN Red List, on account of its widespread range in the Tibetan Plateau's steppes and semi-deserts.

<span class="mw-page-title-main">Sagebrush lizard</span> Species of lizard

The sagebrush lizard or sagebrush swift is a common species of phrynosomatid lizard found at mid to high altitudes in the western United States. It belongs to the genus Sceloporus in the Phrynosomatidae family of reptiles. Named after the sagebrush plants near which it is commonly found, the sagebrush lizard has keeled and spiny scales running along its dorsal surface.

<i>Tropheus moorii</i> Species of fish

Tropheus moorii is a species of cichlid endemic to Lake Tanganyika in Africa. Over 40 different color morphs of this species are dispersed throughout the lake, ranging from dark green to flame red and yellow. They mostly feed on filamentous algae on the rocky shallows they inhabit. T. moorii is a maternal mouthbrooder, so eggs are fertilized and young are carried in the mouth of the female while they hatch and develop.

<span class="mw-page-title-main">Chinese zokor</span> Species of rodent

The Chinese zokor is a species of rodent in the family Spalacidae. It is endemic to China, ranging from Qinghai Province eastwards to Beijing in steppe and alpine grasslands. Henri Milne-Edwards first described it in 1867. Eradication programs in the 1990s in Qinghai Province resulted in a population decline to less than a third of the former population. It is considered common and has been assessed as Least Concern by IUCN.

<i>Phrynocephalus mystaceus</i> Species of lizard

Phrynocephalus mystaceus, also known as the secret toadhead agama and toad-headed agama, is a species of agamid lizard. It is found in southern Russia, Kazakhstan, and northwestern China (Xinjiang) and southward to northern Iran, Afghanistan, Turkmenistan, Tajikistan, Kyrgyzstan, and Uzbekistan.

<i>Phrynocephalus persicus</i> Species of lizard

Phrynocephalus persicus, commonly known as the Persian toad-headed agama, is a small diurnal desert lizard of the family Agamidae. It is the westernmost representative of the Central Asian genus of toad-headed agamas Phrynocephalus and is only known from deserts and semideserts of Iran and possibly Azerbaijan.

<i>Phrynocephalus versicolor</i> Species of lizard

Phrynocephalus versicolor, the Tuvan toad-headed agama, is a species of agamid lizard found in desert areas of China and Mongolia. It was first described by the Russian herpetologist Alexander Strauch, director of the Zoological Museum at the Imperial Academy of Sciences at St. Petersburg.

<i>Phrynocephalus horvathi</i> Species of lizard

Phrynocephalus horvathi is a small diurnal desert lizard in the family Agamidae. It is endemic to the valley of the Aras River and considered Critically Endangered.

<i>Agama bibronii</i> Species of lizard

Agama bibronii, Bibron's agama or the North African rock agama, is a species of lizard belonging to the family Agamidae from north western Africa.

<i>Teratoscincus roborowskii</i> Species of lizard

Teratoscincus roborowskii, commonly known as the Tibetan wonder gecko or Turpan wonder gecko, is a species of gecko in the family Sphaerodactylidae. The species is endemic to the Turpan Depression in Xinjiang, northwestern China, where it occurs in arid shrubland and desert habitats. It reaches a snout-vent length of 75.5–93.6 mm (3.0–3.7 in), and adult males tend to have wider heads than adult females.

<i>Phrynocephalus arabicus</i> Species of lizard

Arabian toad-headed agama is a species of agamid lizard found in Saudi Arabia, Qatar, United Arab Emirates, Oman, Iran, and Jordan.

Phrynocephalus forsythii, also known commonly as Forsyth's toadhead agama and Forsyth's toad-headed lizard, is a species of lizard in the family Agamidae. The species is endemic to China.

Sceloporus virgatus, commonly known as the striped plateau lizard, is a species of lizard within the genus Sceloporus. This genus is known for the signaling modalities that it uses and exhibits, including visual motion and chemical signals that aid in identifying their territories as well as color that indicates aggression. The striped plateau lizard originates from the northern Sierra Madre Occidental and is relatively small in size, measuring less than 72 mm (2.8 in) in length.

References

  1. Cai, B.; Shi, L.; Wang, Y.; Guo, X. (2019). "Phrynocephalus vlangalii". IUCN Red List of Threatened Species . 2019: e.T170417A167503554. doi: 10.2305/IUCN.UK.2019-2.RLTS.T170417A167503554.en . Retrieved 20 November 2021.
  2. 1 2 Phrynocephalus vlangalii at the Reptarium.cz Reptile Database. Accessed 2018-10-31.
  3. 1 2 3 Wu, Yayong; Ramos, Jose A.; Qiu, Xia; Peters, Richard A.; Qi, Yin (2018-01-01). "Female–female aggression functions in mate defence in an Asian agamid lizard". Animal Behaviour. 135: 215–222. doi:10.1016/j.anbehav.2017.11.023. S2CID   54300278.
  4. 1 2 3 4 5 6 Qi, Yin; Noble, D.; Fu, Jinzhong; Whiting, M. (2012). "Spatial and Social Organization in a Burrow-Dwelling Lizard (Phrynocephalus vlangalii) from China". PLOS ONE. 7 (7): e41130. Bibcode:2012PLoSO...741130Q. doi: 10.1371/journal.pone.0041130 . PMC   3402523 . PMID   22844434. S2CID   3925805.
  5. 1 2 3 4 Qi, Yin; Wan, Hongfu; Gu, Haijun; Wang, Yuezhao (2011-05-01). "Do displays and badges function in establishing the social structure of male toad-headed lizards, Phrynocephalus vlangalii?". Journal of Ethology. 29 (2): 381–387. doi:10.1007/s10164-010-0252-y. S2CID   29451801.
  6. 1 2 Zhang, Wenya; Li, Na; Tang, Xiaolong; Liu, Naifa; Zhao, Wei (2018). "Changes in intestinal microbiota across an altitudinal gradient in the lizard Phrynocephalus vlangalii". Ecology and Evolution. 8 (9): 4695–4703. doi:10.1002/ece3.4029. PMC   5938461 . PMID   29760909.
  7. 1 2 3 4 Lu, Hong-Liang; Xu, Chun-Xia; Zeng, Zhi-Gao; Du, Wei-Guo (2018-09-24). "Environmental causes of between-population difference in growth rate of a high-altitude lizard". BMC Ecology. 18 (1): 37. doi:10.1186/s12898-018-0194-8. ISSN   1472-6785. PMC   6154872 . PMID   30249235.
  8. 1 2 Zhang, Xidong; Ji, Xiang; Luo, Laigao; Gao, Jianfang; Zhang, Ling (2005-01-01). "Sexual dimorphism and female reproduction in the Qinghai toad-headed lizard Phrynocephalus vlangalii". Dong wu xue bao [Acta zoologica Sinica]. 51 (6): 1006–1012. ISSN   0001-7302.
  9. Jin, Yuanting (July 2007). "Elevational variation in body size of Phrynocephalus vlangalii in the North Qinghai-Xizang (Tibetan) Plateau". Belgian Journal of Zoology. 137: 197–202. CiteSeerX   10.1.1.578.3604 .
  10. 1 2 Peng-fei, W. U.; Yue-zhao, Wang; Bo, Z. H. U.; Zong-yong, Zeng (2004-08-22). "Phrynocephalus vlangalii at Zoigê, Sichuan: burrow density and depth and their implications". Zoological Research. 25 (4): 311–315. ISSN   2095-8137.
  11. 1 2 Jin, Yuan-Ting; Brown, Richard P.; Liu, Nai-Fa (2008). "Cladogenesis and phylogeography of the lizard Phrynocephalus vlangalii (Agamidae) on the Tibetan plateau". Molecular Ecology. 17 (8): 1971–1982. doi:10.1111/j.1365-294X.2008.03721.x. PMID   18363665. S2CID   29462393.
  12. 1 2 3 Yadamsuren, Oyunchuluun; Murdoch, James D.; Chuluunbat, Suvdtsetseg; Purevee, Erdenetushig; Munkhbayar, Munkhbaatar; Jargalsaikhan, Ariunbold; Purevjargal, Zoljargal; Khorloo, Munkhbayar; Khayankhyarvaa, Terbish (2018-08-24). "Estimating occupancy and detectability of toad headed agamas at the periphery of their range in Mongolia". Journal of Herpetology. 52 (3): 361–368. doi: 10.1670/17-157 . S2CID   91373048.
  13. 1 2 3 Peters, Richard A.; Ramos, Jose A.; Hernandez, Juan; Wu, Yayong; Qi, Yin (2016-08-16). "Social context affects tail displays by Phrynocephalus vlangalii lizards from China". Scientific Reports. 6 (1): 31573. Bibcode:2016NatSR...631573P. doi:10.1038/srep31573. PMC   4985696 . PMID   27526625.
  14. Hu, Chaochao; Wu, Yanqing; Ma, Li; Chen, Yi-Jing; Ji, Xiang (2019-06-01). "Genetic and morphological divergence among three closely related Phrynocephalus species (Agamidae)". BMC Evolutionary Biology. 19 (1): 114. doi:10.1186/s12862-019-1443-y. PMC   6551896 . PMID   31170905.
  15. Zhao, Li; Chen, Yin Ji; Lou, Shang Ling; Huang, Yan; Jehle, Robert; Liao, Wen Bo (2016). "Reciprocal sexual size dimorphism and Rensch's rule in Toad-headed lizards (Phrynocephalus vlangalii)". Salamandra. 52 (3): 261–268. S2CID   89944565.
  16. Jin, Yuan-Ting; Liu, Nai-Fa (2007-01-01). "Altitudinal variation in reproductive strategy of the toad-headed lizard, Phrynocephalus vlangalii in North Tibet Plateau (Qinghai)". Amphibia-Reptilia. 28 (4): 509–515. doi: 10.1163/156853807782152507 .