Poison exon

Last updated
Certain transcripts contain poison exons that can be incorporated via alternative splicing. Skipping of the poison exon leads to a productive transcript that is translated to protein. Incorporation of the poison exon introduces a premature termination codon into the transcript that leads to degradation of the transcript via nonsense-mediated decay. (PDB: 2N3L) Poison exon.png
Certain transcripts contain poison exons that can be incorporated via alternative splicing. Skipping of the poison exon leads to a productive transcript that is translated to protein. Incorporation of the poison exon introduces a premature termination codon into the transcript that leads to degradation of the transcript via nonsense-mediated decay. (PDB: 2N3L)

Poison exons (PEs); also called premature termination codon (PTC) exons or nonsense-mediated decay (NMD) exons] are a class of cassette exons that contain PTCs. Inclusion of a PE in a transcript targets the transcript for degradation via NMD. PEs are generally highly conserved elements of the genome and are thought to have important regulatory roles in biology. [1] [2] Targeting PE inclusion or exclusion in certain transcripts is being evaluated as a therapeutic strategy.

Contents

Discovery

In 2002, a model termed regulated unproductive splicing and translation (RUST) was proposed based on the finding that many (~one-third) alternatively spliced transcripts contain PEs. In this model, coupling alternative splicing to NMD (AS-NMD) is thought to tune transcript levels to regulate protein expression. [3] Alternative splicing may also lead to NMD via other pathways besides PE inclusion, e.g., intron retention. [4] [5]

PEs were initially characterized in RNA-binding proteins from the SR protein family. [1] [2] Genes for other RNA-binding proteins (RBPs) such as those for heterogenous nuclear ribonucleoprotein (hnRNP) also contain PEs. [2] Numerous chromatin regulators also contain PEs, though these are less conserved than PEs within RBPs such as the SR proteins. [6] Multiple spliceosomal components contain PEs. [7] Certain PEs may occur only in specific tissues. [8]

PE-containing transcripts generally represent a minority of the overall transcript population, in part due to their active degradation via NMD, though this relative abundance can be elevated upon inhibition of NMD or certain biological states. [2] [7] [9] [10] [11] Certain PE-containing transcripts are resistant to NMD and may be translated into truncated proteins. [12]

Regulation

Cis-regulatory elements neighboring PEs have been found to affect PE inclusion. [13]

Many proteins whose corresponding genes contain PEs autoregulate PE inclusion in their respective transcripts and thereby control their own levels via a feedback loop. [12] [14] [15] [16] [17] [18] [19] Cross-regulation of PE inclusion has also been observed. [20] [21] [22]

Differential splicing of PEs is implicated in biological processes such as differentiation, [23] [24] neurodevelopment, [25] dispersal of nuclear speckles during hypoxia, [26] tumorigenesis, [24] [27] organism growth, [15] and T cell expansion. [28]

Protein kinases that regulate phosphorylation of splicing factors can affect splicing processes, thus kinase inhibitors may affect inclusion of PEs. For example, CMGC kinase inhibitors and CDK9 inhibitors have been found to induce PE inclusion in RBM39 . [29]

Small molecules that modulate chromatin accessibility can affect PE inclusion. [30]

Mutations in splicing factors can lead to inclusion of PEs in certain transcripts. [31]

PE inclusion can be regulated by external variables such as temperature and electrical activity. For example, PE inclusion in RBM3 transcript is lowered during hypothermia. This is mediated by temperature-dependent binding of the splicing factor HNRNPH1 to the RBM3 transcript. [9] The neuronal RBPs NOVA1/2 are translocated from the nucleus to the cytoplasm during pilocarpine-induced seizure in mice, and it was found that NOVA1/2 regulates the expression of cryptic PEs. [32] The glycosyltransferase O-GlcNAc transferase is responsible for installing the O-GlcNAc post-translational modification and contains a PE. [33] It has been frequently observed that pharmacological or genetic perturbations that elevate cellular O-GlcNAc levels increase PE inclusion in the OGT transcript. [34]

Disease

Proper regulation of PE inclusion and exclusion is important for health. Genetic mutations can affect inclusion of PEs and cause disease. For example, loss of CCAR1 leads to PE inclusion in the FANCA transcript, resulting in a Fanconi anemia phenotype. [35]

Dysregulation of components of the splicing machinery can also cause dysregulation of PE inclusion. Mutations in the splicing factor SF3B1 have been found to promote PE inclusion in BRD9 , reducing BRD9 mRNA and protein levels and leading to melanomagenesis. [36] Mutations in U2AF1 promote PE inclusion in EIF4A2 , leading to impaired global mRNA translation and acute myeloid leukemia (AML) chemoresistance through the integrated stress response pathway. [37] The splicing factor SRSF6 contains a PE whose skipping is connected to T cell acute lymphoblastic leukemia (T-ALL), [38] and PE inclusion in SRSF10 is linked to acute lymphoblastic leukemia (ALL). [39]

Intronic mutations can lead to PE inclusion, such as in the case of SCN1A , where mutations within intron 20 promote inclusion of the nearby PE 20N, leading to Dravet syndrome-like phenotypes in mouse models. [40] [41] An intronic mutation in FLNA has been found to impair binding of the splicing regulator PTBP1, leading to inclusion of a poison exon in FLNA transcripts that causes a brain-specific malformation. [25] In RAD50 , TGAGT deletion is associated with a cryptic poison exon that occurs 30 nucleotides downstream within intron 21 mediated by altered U2AF recognition. [42]

Differential inclusion of PEs in various splicing factor and hnRNP genes has been reported in type 1 diabetes. [43] SRSF2 mutations have been found to promote PE inclusion in the epigenetic regulator EZH2 , resulting in impaired hematopoietic differentiation. [31]

The TRA2B PE is essential for male fertility and meiotic cell division in mouse models. Deletion of this PE leads to an azoospermia phenotype. [44]

Clinical relevance

Diagnostics

With the advent of next-generation sequencing technologies, [45] diagnostic genetic testing has emerged as a powerful tool to diagnose afflictions associated with specific genetic variants. Many diagnostic genetic testing efforts have focused on exome sequencing. [46] PE annotations may improve the diagnostic yield of these tests for certain diseases. For example, variants that affect PE inclusion in sodium channel genes (SCN1A, SCN2A , and SCN8A ) have been found to be associated with epilepsies, and analogous variants in SNRPB have been found to be associated with cerebrocostomandibular syndrome. [47] [48]

Therapeutic discovery

As PE inclusion results in transcript degradation, targeted PE inclusion or exclusion is being evaluated as a therapeutic strategy. [49] This strategy may prove especially applicable towards targets whose gene products are not easily ligandable such as "undruggable" proteins. Targeting PE inclusion/exlusion has been demonstrated with both small molecules [50] [51] and antisense oligonucleotides (ASOs). [24] [52] Small molecules may modulate splicing by stabilizing alternative splice sites. [50] [53] ASOs may block specific splice sites or target certain cis-regulatory elements to promote splicing at other sites. [54] [55] These ASOs may also be referred to as splice-switching oligonucleotides (SSOs). [24] [55] ASO walks tiling different ASOs across a gene sequence may be necessary to identify ASOs that have the desired effect on PE inclusion. [52]

Stoke Therapeutics is evaluating a strategy termed Targeted Augmentation of Nuclear Gene Output (TANGO). [52] Targeting exon 20N in SCN1A mRNA with the antisense oligonucleotide zorevunersen (STK-001) blocks inclusion of this PE, leading to elevated levels of the productive SCN1A transcript and the gene product sodium channel protein 1 subunit alpha (NaV1.1). In mouse models of Dravet syndrome, which is driven by mutations in SCN1A, [40] [41] [56] zorevunersen was able to reduce incidence of electrographic seizures and sudden unexpected death in epilepsy and prolong survival. [57] [58] As of October 2024, zorevunersen is being evaluated in phase 2 clinical trials (NCT04740476). [59] Zorevunersen received FDA Breakthrough Therapy Designation in December 2024. [60] Also in December 2024, Stoke Therapeutics disclosed that zorevunersen is generally well tolerated and shows substantial and sustained reductions in convulsive seizure frequency. [61] Stoke Therapeutics expects to launch a phase 3 clinical trial in 2025 evaluating zorevunersen for reduction in seizure frequency as the primary endpoint and cognition and behavioral changes as secondary endpoints. [62]

Stoke Therapeutics is also evaluating the ASO STK-002 for treatment of autosomal dominant optic atrophy (ADOA). STK-002 promotes removal of a PE in the transcript of OPA1 , leading to elevated OPA1 protein levels. [63]

Remix Therapeutics developed REM-422, which is an oral small molecule that promotes PE inclusion in the oncogene MYB . REM-422 was discovered through a screening campaign for molecules that promote PE inclusion in MYB. Subsequent in vitro experiments showed that REM-422 selectively facilitates binding of the U1 snRNP complex to oligonucleotides containing the MYB 5' splice site sequence. In various AML cell lines, REM-422 leads to degradation of MYB mRNA and lower MYB protein levels. REM-422 demonstrated antitumor activity in mouse xenograft models of acute myeloid leukemia. [50] [64] As of October 2024, REM-422 is being evaluated in phase 1 clinical trials (NCT06118086, NCT06297941). [65] [66] The splicing modulator small molecule risdiplam, originally developed to promote exon 7 inclusion in the SMN2 transcript for treatment of spinal muscular atrophy, [67] [68] dose-dependently promotes PE inclusion in the MYB transcript as well. [69]

Rgenta Therapeutics has also developed RGT-61159, an oral small molecule that promotes PE inclusion in MYB, as a potential treatment for adenoid cystic carcinoma (ACC). [70] RGT-61159 is being evaluated in phase 1 clinical trials (NCT06462183). [71]

PTC Therapeutics is evaluating the oral small molecule PTC518 as a treatment for Huntington's disease. [51] PTC518 was well-tolerated and showed dose-dependent decreases in HTT mRNA and HTT protein levels in a phase 1 clinical trial. [72] As of October 2024, PTC518 is being evaluated in phase 2 clinical trials (NCT05358717). [73] In December 2024, Novartis entered a global license and collaboration agreement with PTC Therapeutics for PTC518 with an upfront payment of $1.0 billion and up to $1.9 billion in development, regulatory, and sales milestones. [74]

Therapeutic targeting of poison exon inclusion/exclusion has also been proposed for oncogenic splicing factors, [24] [27] BRD9 (for treatment of cancer), [36] SYNGAP1, [75] RBM3 (for treatment of neurodegeneration), [54] and CFTR (for treatment of cystic fibrosis). [76]

Related Research Articles

<span class="mw-page-title-main">Exon</span> Region of a transcribed gene present in the final functional mRNA molecule

An exon is any part of a gene that will form a part of the final mature RNA produced by that gene after introns have been removed by RNA splicing. The term exon refers to both the DNA sequence within a gene and to the corresponding sequence in RNA transcripts. In RNA splicing, introns are removed and exons are covalently joined to one another as part of generating the mature RNA. Just as the entire set of genes for a species constitutes the genome, the entire set of exons constitutes the exome.

An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word intron is derived from the term intragenic region, i.e., a region inside a gene. The term intron refers to both the DNA sequence within a gene and the corresponding RNA sequence in RNA transcripts. The non-intron sequences that become joined by this RNA processing to form the mature RNA are called exons.

<span class="mw-page-title-main">RNA splicing</span> Process in molecular biology

RNA splicing is a process in molecular biology where a newly-made precursor messenger RNA (pre-mRNA) transcript is transformed into a mature messenger RNA (mRNA). It works by removing all the introns and splicing back together exons. For nuclear-encoded genes, splicing occurs in the nucleus either during or immediately after transcription. For those eukaryotic genes that contain introns, splicing is usually needed to create an mRNA molecule that can be translated into protein. For many eukaryotic introns, splicing occurs in a series of reactions which are catalyzed by the spliceosome, a complex of small nuclear ribonucleoproteins (snRNPs). There exist self-splicing introns, that is, ribozymes that can catalyze their own excision from their parent RNA molecule. The process of transcription, splicing and translation is called gene expression, the central dogma of molecular biology.

Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small fragments of nucleic acids can be manufactured as single-stranded molecules with any user-specified sequence, and so are vital for artificial gene synthesis, polymerase chain reaction (PCR), DNA sequencing, molecular cloning and as molecular probes. In nature, oligonucleotides are usually found as small RNA molecules that function in the regulation of gene expression, or are degradation intermediates derived from the breakdown of larger nucleic acid molecules.

<span class="mw-page-title-main">Alternative splicing</span> Process by which a gene can code for multiple proteins

Alternative splicing, or alternative RNA splicing, or differential splicing, is an alternative splicing process during gene expression that allows a single gene to produce different splice variants. For example, some exons of a gene may be included within or excluded from the final RNA product of the gene. This means the exons are joined in different combinations, leading to different splice variants. In the case of protein-coding genes, the proteins translated from these splice variants may contain differences in their amino acid sequence and in their biological functions.

<span class="mw-page-title-main">Morpholino</span> Chemical compound

A Morpholino, also known as a Morpholino oligomer and as a phosphorodiamidate Morpholino oligomer (PMO), is a type of oligomer molecule used in molecular biology to modify gene expression. Its molecular structure contains DNA bases attached to a backbone of methylenemorpholine rings linked through phosphorodiamidate groups. Morpholinos block access of other molecules to small specific sequences of the base-pairing surfaces of ribonucleic acid (RNA). Morpholinos are used as research tools for reverse genetics by knocking down gene function.

Trans-splicing is a special form of RNA processing where exons from two different primary RNA transcripts are joined end to end and ligated. It is usually found in eukaryotes and mediated by the spliceosome, although some bacteria and archaea also have "half-genes" for tRNAs.

<span class="mw-page-title-main">SR protein</span>

SR proteins are a conserved family of proteins involved in RNA splicing. SR proteins are named because they contain a protein domain with long repeats of serine and arginine amino acid residues, whose standard abbreviations are "S" and "R" respectively. SR proteins are ~200-600 amino acids in length and composed of two domains, the RNA recognition motif (RRM) region and the RS domain. SR proteins are more commonly found in the nucleus than the cytoplasm, but several SR proteins are known to shuttle between the nucleus and the cytoplasm.

<span class="mw-page-title-main">Post-transcriptional modification</span> RNA processing within a biological cell

Transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, functional RNA molecule that can then leave the nucleus and perform any of a variety of different functions in the cell. There are many types of post-transcriptional modifications achieved through a diverse class of molecular mechanisms.

<span class="mw-page-title-main">Nonsense-mediated decay</span> Elimination of mRNA with premature stop codons in eukaryotes

Nonsense-mediated mRNA decay (NMD) is a surveillance pathway that exists in all eukaryotes. Its main function is to reduce errors in gene expression by eliminating mRNA transcripts that contain premature stop codons. Translation of these aberrant mRNAs could, in some cases, lead to deleterious gain-of-function or dominant-negative activity of the resulting proteins.

Dravet syndrome (DS), previously known as severe myoclonic epilepsy of infancy (SMEI), is an autosomal dominant genetic disorder which causes a catastrophic form of epilepsy, with prolonged seizures that are often triggered by hot temperatures or fever. It is very difficult to treat with anticonvulsant medications. It often begins before one year of age, with six months being the age that seizures, char­ac­ter­ized by prolonged convulsions and triggered by fever, usually begin.

An exonic splicing silencer (ESS) is a short region of an exon and is a cis-regulatory element. A set of 103 hexanucleotides known as FAS-hex3 has been shown to be abundant in ESS regions. ESSs inhibit or silence splicing of the pre-mRNA and contribute to constitutive and alternate splicing. To elicit the silencing effect, ESSs recruit proteins that will negatively affect the core splicing machinery.

SCN1A Protein-coding gene in the species Homo sapiens

Sodium channel protein type 1 subunit alpha (SCN1A), is a protein which in humans is encoded by the SCN1A gene.

<span class="mw-page-title-main">UPF3B</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 3B is a protein that in humans is encoded by the UPF3B gene.

<span class="mw-page-title-main">UPF3A</span> Protein-coding gene in the species Homo sapiens

Regulator of nonsense transcripts 3A is a protein that in humans is encoded by the UPF3A gene.

<span class="mw-page-title-main">RBM9</span> Protein-coding gene in the species Homo sapiens

RNA binding motif protein 9 (RBM9), also known as Rbfox2, is a protein which in humans is encoded by the RBM9 gene.

<span class="mw-page-title-main">RBFOX1</span> Protein-coding gene in the species Homo sapiens

Fox-1 homolog A, also known as ataxin 2-binding protein 1 (A2BP1) or hexaribonucleotide-binding protein 1 (HRNBP1) or RNA binding protein, fox-1 homolog (Rbfox1), is a protein that in humans is encoded by the RBFOX1 gene.

mRNA surveillance mechanisms are pathways utilized by organisms to ensure fidelity and quality of messenger RNA (mRNA) molecules. There are a number of surveillance mechanisms present within cells. These mechanisms function at various steps of the mRNA biogenesis pathway to detect and degrade transcripts that have not properly been processed.

<span class="mw-page-title-main">Exon junction complex</span> Protein complex assembled on mRNA

An exon junction complex (EJC) is a protein complex which forms on a pre-messenger RNA strand at the junction of two exons which have been joined together during RNA splicing. The EJC has major influences on translation, surveillance, localization of the spliced mRNA, and m6A methylation. It is first deposited onto mRNA during splicing and is then transported into the cytoplasm. There it plays a major role in post-transcriptional regulation of mRNA. It is believed that exon junction complexes provide a position-specific memory of the splicing event. The EJC consists of a stable heterotetramer core, which serves as a binding platform for other factors necessary for the mRNA pathway. The core of the EJC contains the protein eukaryotic initiation factor 4A-III bound to an adenosine triphosphate (ATP) analog, as well as the additional proteins Magoh and Y14. The binding of these proteins to nuclear speckled domains has been measured recently and it may be regulated by PI3K/AKT/mTOR signaling pathways. In order for the binding of the complex to the mRNA to occur, the eIF4AIII factor is inhibited, stopping the hydrolysis of ATP. This recognizes EJC as an ATP dependent complex. EJC also interacts with a large number of additional proteins; most notably SR proteins. These interactions are suggested to be important for mRNA compaction. The role of EJC in mRNA export is controversial.

ncRNA therapy

A majority of the human genome is made up of non-protein coding DNA. It infers that such sequences are not commonly employed to encode for a protein. However, even though these regions do not code for protein, they have other functions and carry necessary regulatory information.They can be classified based on the size of the ncRNA. Small noncoding RNA is usually categorized as being under 200 bp in length, whereas long noncoding RNA is greater than 200bp. In addition, they can be categorized by their function within the cell; Infrastructural and Regulatory ncRNAs. Infrastructural ncRNAs seem to have a housekeeping role in translation and splicing and include species such as rRNA, tRNA, snRNA.Regulatory ncRNAs are involved in the modification of other RNAs.

References

  1. 1 2 Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O'Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E.; Ares, Manuel (2007-03-15). "Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay". Genes & Development. 21 (6): 708–718. doi:10.1101/gad.1525507. ISSN   0890-9369. PMC   1820944 . PMID   17369403.
  2. 1 2 3 4 Lareau, Liana F.; Inada, Maki; Green, Richard E.; Wengrod, Jordan C.; Brenner, Steven E. (April 2007). "Unproductive splicing of SR genes associated with highly conserved and ultraconserved DNA elements". Nature. 446 (7138): 926–929. Bibcode:2007Natur.446..926L. doi:10.1038/nature05676. ISSN   1476-4687. PMID   17361132.
  3. Lewis, Benjamin P.; Green, Richard E.; Brenner, Steven E. (2003-01-07). "Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans". Proceedings of the National Academy of Sciences. 100 (1): 189–192. Bibcode:2003PNAS..100..189L. doi: 10.1073/pnas.0136770100 . ISSN   0027-8424. PMC   140922 . PMID   12502788.
  4. Wong, Justin J.-L.; Ritchie, William; Ebner, Olivia A.; Selbach, Matthias; Wong, Jason W.H.; Huang, Yizhou; Gao, Dadi; Pinello, Natalia; Gonzalez, Maria; Baidya, Kinsha; Thoeng, Annora; Khoo, Teh-Liane; Bailey, Charles G.; Holst, Jeff; Rasko, John E.J. (August 2013). "Orchestrated Intron Retention Regulates Normal Granulocyte Differentiation". Cell. 154 (3): 583–595. doi:10.1016/j.cell.2013.06.052. PMID   23911323.
  5. Braunschweig, Ulrich; Barbosa-Morais, Nuno L.; Pan, Qun; Nachman, Emil N.; Alipanahi, Babak; Gonatopoulos-Pournatzis, Thomas; Frey, Brendan; Irimia, Manuel; Blencowe, Benjamin J. (November 2014). "Widespread intron retention in mammals functionally tunes transcriptomes". Genome Research. 24 (11): 1774–1786. doi:10.1101/gr.177790.114. PMC   4216919 . PMID   25258385.
  6. Yan, Qinghong; Weyn-Vanhentenryck, Sebastien M.; Wu, Jie; Sloan, Steven A.; Zhang, Ye; Chen, Kenian; Wu, Jia Qian; Barres, Ben A.; Zhang, Chaolin (2015-03-03). "Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators". Proceedings of the National Academy of Sciences of the United States of America. 112 (11): 3445–3450. Bibcode:2015PNAS..112.3445Y. doi: 10.1073/pnas.1502849112 . PMC   4371929 . PMID   25737549.
  7. 1 2 Saltzman, Arneet L.; Kim, Yoon Ki; Pan, Qun; Fagnani, Matthew M.; Maquat, Lynne E.; Blencowe, Benjamin J. (2008-04-28). "Regulation of Multiple Core Spliceosomal Proteins by Alternative Splicing-Coupled Nonsense-Mediated mRNA Decay". Molecular and Cellular Biology. 28 (13): 4320–4330. doi:10.1128/MCB.00361-08. PMC   2447145 . PMID   18443041.
  8. Margasyuk, Sergey; Kuznetsova, Antonina; Zavileyskiy, Lev; Vlasenok, Maria; Skvortsov, Dmitry; Pervouchine, Dmitri D. (December 2024). "Human introns contain conserved tissue-specific cryptic poison exons". NAR Genomics and Bioinformatics. 6 (4): lqae163. doi:10.1093/nargab/lqae163. ISSN   2631-9268. PMC   11632617 . PMID   39664813.
  9. 1 2 Lin, Julie Qiaojin; Khuperkar, Deepak; Pavlou, Sofia; Makarchuk, Stanislaw; Patikas, Nikolaos; Lee, Flora CY; Zbiegly, Julia M; Kang, Jianning; Field, Sarah F; Bailey, David MD; Freeman, Joshua L; Ule, Jernej; Metzakopian, Emmanouil; Ruepp, Marc-David; Mallucci, Giovanna R (2023-07-17). "HNRNPH1 regulates the neuroprotective cold-shock protein RBM3 expression through poison exon exclusion". The EMBO Journal. 42 (14): e113168. doi:10.15252/embj.2022113168. ISSN   0261-4189. PMC   10350819 . PMID   37248947.
  10. Kalyna, Maria; Simpson, Craig G.; Syed, Naeem H.; Lewandowska, Dominika; Marquez, Yamile; Kusenda, Branislav; Marshall, Jacqueline; Fuller, John; Cardle, Linda; McNicol, Jim; Dinh, Huy Q.; Barta, Andrea; Brown, John W. S. (March 2012). "Alternative splicing and nonsense-mediated decay modulate expression of important regulatory genes in Arabidopsis". Nucleic Acids Research. 40 (6): 2454–2469. doi:10.1093/nar/gkr932. ISSN   1362-4962. PMC   3315328 . PMID   22127866.
  11. Carter, Mark S.; Doskow, Jessica; Morris, Phillip; Li, Shulin; Nhim, Ronald P.; Sandstedt, Sara; Wilkinson, Miles F. (December 1995). "A Regulatory Mechanism That Detects Premature Nonsense Codons in T-cell Receptor Transcripts in Vivo Is Reversed by Protein Synthesis Inhibitors in Vitro". Journal of Biological Chemistry. 270 (48): 28995–29003. doi: 10.1074/jbc.270.48.28995 . PMID   7499432.
  12. 1 2 Königs, Vanessa; Machado, Camila de Oliveira Freitas; Arnold, Benjamin; Blümel, Nicole; Solovyeva, Anfisa; Löbbert, Sinah; Schafranek, Michal; Mozos, Igor Ruiz De Los; Wittig, Ilka; McNicoll, Francois; Schulz, Marcel H.; Müller-McNicoll, Michaela (2020-03-02). "SRSF7 maintains its homeostasis through the expression of Split-ORFs and nuclear body assembly". Nature Structural & Molecular Biology. 27 (3): 260–273. doi:10.1038/s41594-020-0385-9. PMC   7096898 . PMID   32123389.
  13. Li, Hao; Ding, Zhan; Fang, Zhuo-Ya; Long, Ni; Ang, Hao-Yang; Zhang, Yu; Fan, Yu-Jie; Xu, Yong-Zhen (2024-06-10). "Conserved intronic secondary structures with concealed branch sites regulate alternative splicing of poison exons". Nucleic Acids Research. 52 (10): 6002–6016. doi:10.1093/nar/gkae185. ISSN   0305-1048. PMC   11162794 . PMID   38499485.
  14. Stoilov, P. (2004-01-06). "Human tra2-beta1 autoregulates its protein concentration by influencing alternative splicing of its pre-mRNA". Human Molecular Genetics. 13 (5): 509–524. doi:10.1093/hmg/ddh051. ISSN   1460-2083. PMID   14709600.
  15. 1 2 Belleville, Andrea E.; Thomas, James D.; Tonnies, Jackson; Gabel, Austin M.; Borrero Rossi, Andrea; Singh, Priti; Queitsch, Christine; Bradley, Robert K. (2024-08-16). Copenhaver, Gregory P. (ed.). "An autoregulatory poison exon in Smndc1 is conserved across kingdoms and influences organism growth". PLOS Genetics. 20 (8): e1011363. doi: 10.1371/journal.pgen.1011363 . ISSN   1553-7404. PMC   11357089 . PMID   39150991.
  16. Wollerton, Matthew C; Gooding, Clare; Wagner, Eric J; Garcia-Blanco, Mariano A; Smith, Christopher W.J (January 2004). "Autoregulation of Polypyrimidine Tract Binding Protein by Alternative Splicing Leading to Nonsense-Mediated Decay". Molecular Cell. 13 (1): 91–100. doi:10.1016/S1097-2765(03)00502-1. PMID   14731397.
  17. Rossbach, Oliver; Hung, Lee-Hsueh; Schreiner, Silke; Grishina, Inna; Heiner, Monika; Hui, Jingyi; Bindereif, Albrecht (2009-03-01). "Auto- and Cross-Regulation of the hnRNP L Proteins by Alternative Splicing". Molecular and Cellular Biology. 29 (6): 1442–1451. doi:10.1128/MCB.01689-08. ISSN   1098-5549. PMC   2648227 . PMID   19124611.
  18. Sureau, A. (2001-04-02). "SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs". The EMBO Journal. 20 (7): 1785–1796. doi:10.1093/emboj/20.7.1785. PMC   145484 . PMID   11285241.
  19. Campagne, Sébastien; Jutzi, Daniel; Malard, Florian; Matoga, Maja; Romane, Ksenija; Feldmuller, Miki; Colombo, Martino; Ruepp, Marc-David; Allain, Frédéric H-T. (2023-09-04). "Molecular basis of RNA-binding and autoregulation by the cancer-associated splicing factor RBM39". Nature Communications. 14 (1): 5366. Bibcode:2023NatCo..14.5366C. doi:10.1038/s41467-023-40254-5. ISSN   2041-1723. PMC   10477243 . PMID   37666821.
  20. Yang, Sisi; Jia, Rong; Bian, Zhuan (September 2018). "SRSF5 functions as a novel oncogenic splicing factor and is upregulated by oncogene SRSF3 in oral squamous cell carcinoma". Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 1865 (9): 1161–1172. doi:10.1016/j.bbamcr.2018.05.017. PMID   29857020.
  21. Änkö, Minna-Liisa; Müller-McNicoll, Michaela; Brandl, Holger; Curk, Tomaz; Gorup, Crtomir; Henry, Ian; Ule, Jernej; Neugebauer, Karla M (2012-03-21). "The RNA-binding landscapes of two SR proteins reveal unique functions and binding to diverse RNA classes". Genome Biology. 13 (3): R17. doi: 10.1186/gb-2012-13-3-r17 . ISSN   1474-760X. PMC   3439968 . PMID   22436691.
  22. Best, Andrew; James, Katherine; Dalgliesh, Caroline; Hong, Elaine; Kheirolahi-Kouhestani, Mahsa; Curk, Tomaz; Xu, Yaobo; Danilenko, Marina; Hussain, Rafiq; Keavney, Bernard; Wipat, Anil; Klinck, Roscoe; Cowell, Ian G.; Cheong Lee, Ka; Austin, Caroline A. (2014-09-11). "Human Tra2 proteins jointly control a CHEK1 splicing switch among alternative and constitutive target exons". Nature Communications. 5 (1): 4760. Bibcode:2014NatCo...5.4760B. doi:10.1038/ncomms5760. ISSN   2041-1723. PMC   4175592 . PMID   25208576.
  23. Pimentel, Harold; Parra, Marilyn; Gee, Sherry; Ghanem, Dana; An, Xiuli; Li, Jie; Mohandas, Narla; Pachter, Lior; Conboy, John G. (2014-01-17). "A dynamic alternative splicing program regulates gene expression during terminal erythropoiesis". Nucleic Acids Research. 42 (6): 4031–4042. doi:10.1093/nar/gkt1388. PMC   3973340 . PMID   24442673.
  24. 1 2 3 4 5 Leclair, Nathan K.; Brugiolo, Mattia; Urbanski, Laura; Lawson, Shane C.; Thakar, Ketan; Yurieva, Marina; George, Joshy; Hinson, John Travis; Cheng, Albert; Graveley, Brenton R.; Anczuków, Olga (November 2020). "Poison Exon Splicing Regulates a Coordinated Network of SR Protein Expression during Differentiation and Tumorigenesis". Molecular Cell. 80 (4): 648–665.e9. doi:10.1016/j.molcel.2020.10.019. PMC   7680420 . PMID   33176162.
  25. 1 2 Zhang, Xiaochang; Chen, Ming Hui; Wu, Xuebing; Kodani, Andrew; Fan, Jean; Doan, Ryan; Ozawa, Manabu; Ma, Jacqueline; Yoshida, Nobuaki; Reiter, Jeremy F.; Black, Douglas L.; Kharchenko, Peter V.; Sharp, Phillip A.; Walsh, Christopher A. (2025-08-20). "Cell Type-specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex". Cell. 166 (5): 1147–1162.e15. doi:10.1016/j.cell.2016.07.025. hdl:1721.1/116859. PMC   5248659 . PMID   27565344.
  26. de Oliveira Freitas Machado, Camila; Schafranek, Michal; Brüggemann, Mirko; Hernández Cañás, María Clara; Keller, Mario; Di Liddo, Antonella; Brezski, Andre; Blümel, Nicole; Arnold, Benjamin; Bremm, Anja; Wittig, Ilka; Jaé, Nicolas; McNicoll, François; Dimmeler, Stefanie; Zarnack, Kathi (2023-01-25). "Poison cassette exon splicing of SRSF6 regulates nuclear speckle dispersal and the response to hypoxia". Nucleic Acids Research. 51 (2): 870–890. doi:10.1093/nar/gkac1225. ISSN   0305-1048. PMC   9881134 . PMID   36620874.
  27. 1 2 Thomas, James D.; Polaski, Jacob T.; Feng, Qing; De Neef, Emma J.; Hoppe, Emma R.; McSharry, Maria V.; Pangallo, Joseph; Gabel, Austin M.; Belleville, Andrea E.; Watson, Jacqueline; Nkinsi, Naomi T.; Berger, Alice H.; Bradley, Robert K. (January 2020). "RNA isoform screens uncover the essentiality and tumor-suppressor activity of ultraconserved poison exons". Nature Genetics. 52 (1): 84–94. doi:10.1038/s41588-019-0555-z. ISSN   1546-1718. PMC   6962552 . PMID   31911676.
  28. Karginov, Timofey A.; Ménoret, Antoine; Leclair, Nathan K.; Harrison, Andrew G.; Chandiran, Karthik; Suarez-Ramirez, Jenny E.; Yurieva, Marina; Karlinsey, Keaton; Wang, Penghua; O'Neill, Rachel J.; Murphy, Patrick A.; Adler, Adam J.; Cauley, Linda S.; Anczuków, Olga; Zhou, Beiyan (2024-09-13). "Autoregulated splicing of TRA2 β programs T cell fate in response to antigen-receptor stimulation". Science. 385 (6714): eadj1979. Bibcode:2024Sci...385j1979K. doi:10.1126/science.adj1979. ISSN   0036-8075. PMID   39265028.
  29. Jin, Qi; Harris, Ethan; Myers, Jacquelyn A.; Mehmood, Rashid; Cotton, Anitria; Shirnekhi, Hazheen K.; Baggett, David W.; Wen, Jeremy Qiang; Schild, Andrew B.; Bhansali, Rahul S.; Klein, Jonathon; Narina, Shilpa; Pieters, Tim; Yoshimi, Akihide; Pruett-Miller, Shondra M. (2024-12-05). "Disruption of cotranscriptional splicing suggests RBM39 is a therapeutic target in acute lymphoblastic leukemia". Blood. 144 (23): 2417–2431. doi:10.1182/blood.2024024281. ISSN   0006-4971. PMC   11628860 . PMID   39316649.
  30. Vital, Tamara; Wali, Aminah; Butler, Kyle V.; Xiong, Yan; Foster, Joseph P.; Marcel, Shelsa S.; McFadden, Andrew W.; Nguyen, Valerie U.; Bailey, Benton M.; Lamb, Kelsey N.; James, Lindsey I.; Frye, Stephen V.; Mosely, Amber L.; Jin, Jian; Pattenden, Samantha G. (2023-01-30). "MS0621, a novel small-molecule modulator of Ewing sarcoma chromatin accessibility, interacts with an RNA-associated macromolecular complex and influences RNA splicing". Frontiers in Oncology. 13. doi: 10.3389/fonc.2023.1099550 . ISSN   2234-943X. PMC   9924231 . PMID   36793594.
  31. 1 2 Kim, Eunhee; Ilagan, Janine O.; Liang, Yang; Daubner, Gerrit M.; Lee, Stanley C.-W.; Ramakrishnan, Aravind; Li, Yue; Chung, Young Rock; Micol, Jean-Baptiste; Murphy, Michele E.; Cho, Hana; Kim, Min-Kyung; Zebari, Ahmad S.; Aumann, Shlomzion; Park, Christopher Y. (May 2015). "SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition". Cancer Cell. 27 (5): 617–630. doi:10.1016/j.ccell.2015.04.006. PMC   4429920 . PMID   25965569.
  32. Eom, Taesun; Zhang, Chaolin; Wang, Huidong; Lay, Kenneth; Fak, John; Noebels, Jeffrey L; Darnell, Robert B (2013-01-22). "NOVA-dependent regulation of cryptic NMD exons controls synaptic protein levels after seizure". eLife. 2: e00178. doi: 10.7554/eLife.00178 . ISSN   2050-084X. PMC   3552424 . PMID   23359859.
  33. Tan, Zhi-Wei; Fei, George; Paulo, Joao A; Bellaousov, Stanislav; Martin, Sara E S; Duveau, Damien Y; Thomas, Craig J; Gygi, Steven P; Boutz, Paul L; Walker, Suzanne (2020-06-04). "O-GlcNAc regulates gene expression by controlling detained intron splicing". Nucleic Acids Research. 48 (10): 5656–5669. doi:10.1093/nar/gkaa263. ISSN   0305-1048. PMC   7261177 . PMID   32329777.
  34. Cheng, Steven S.; Mody, Alison C.; Woo, Christina M. (2024-11-07). "Opportunities for Therapeutic Modulation of O-GlcNAc". Chemical Reviews. 124 (22): 12918–13019. doi:10.1021/acs.chemrev.4c00417. ISSN   0009-2665. PMID   39509538.
  35. Harada, Naoya; Asada, Shuhei; Jiang, Lige; Nguyen, Huy; Moreau, Lisa; Marina, Ryan J.; Adelman, Karen; Iyer, Divya R.; D'Andrea, Alan D. (July 2024). "The splicing factor CCAR1 regulates the Fanconi anemia/BRCA pathway". Molecular Cell. 84 (14): 2618–2633.e10. doi:10.1016/j.molcel.2024.06.031. PMC   11321822 . PMID   39025073.
  36. 1 2 Inoue, Daichi; Chew, Guo-Liang; Liu, Bo; Michel, Brittany C.; Pangallo, Joseph; D'Avino, Andrew R.; Hitchman, Tyler; North, Khrystyna; Lee, Stanley Chun-Wei; Bitner, Lillian; Block, Ariele; Moore, Amanda R.; Yoshimi, Akihide; Escobar-Hoyos, Luisa; Cho, Hana (2019-10-09). "Spliceosomal disruption of the non-canonical BAF complex in cancer". Nature. 574 (7778): 432–436. Bibcode:2019Natur.574..432I. doi:10.1038/s41586-019-1646-9. PMC   6858563 . PMID   31597964.
  37. Jin, Peng; Wang, Xiaoling; Jin, Qiqi; Zhang, Yi; Shen, Jie; Jiang, Ge; Zhu, Hongming; Zhao, Ming; Wang, Dan; Li, Zeyi; Zhou, Yan; Li, Wenzhu; Zhang, Wei; Liu, Yabin; Wang, Siyang (2024-05-15). "Mutant U2AF1-Induced Mis-Splicing of mRNA Translation Genes Confers Resistance to Chemotherapy in Acute Myeloid Leukemia". Cancer Research. 84 (10): 1583–1596. doi:10.1158/0008-5472.CAN-23-2543. ISSN   0008-5472. PMID   38417135.
  38. Zhou, Yalu; Han, Cuijuan; Wang, Eric; Lorch, Adam H.; Serafin, Valentina; Cho, Byoung-Kyu; Diaz, Blanca T. Gutierrez; Calvo, Julien; Fang, Celestia; Khodadadi-Jamayran, Alireza; Tabaglio, Tommaso; Marier, Christian; Kuchmiy, Anna; Sun, Limin; Yacu, George (2022-05-20). "Posttranslational regulation of the exon skipping machinery controls aberrant splicing in leukemia". Cancer Discovery. 10 (9): 1388–1409. doi:10.1158/2159-8290.CD-19-1436. PMC   7483384 . PMID   32444465.
  39. Torres-Diz, Manuel; Reglero, Clara; Falkenstein, Catherine D.; Castro, Annette; Hayer, Katharina E.; Radens, Caleb M.; Quesnel-Vallières, Mathieu; Ang, Zhiwei; Sehgal, Priyanka; Li, Marilyn M.; Barash, Yoseph; Tasian, Sarah K.; Ferrando, Adolfo; Thomas-Tikhonenko, Andrei (2024-10-15). "An Alternatively Spliced Gain-of-Function NT5C2 Isoform Contributes to Chemoresistance in Acute Lymphoblastic Leukemia". Cancer Research. 84 (20): 3327–3336. doi:10.1158/0008-5472.CAN-23-3804. ISSN   0008-5472. PMC   11474164 . PMID   39094066.
  40. 1 2 Carvill, Gemma L.; Engel, Krysta L.; Ramamurthy, Aishwarya; Cochran, J. Nicholas; Roovers, Jolien; Stamberger, Hannah; Lim, Nicholas; Schneider, Amy L.; Hollingsworth, Georgie; Holder, Dylan H.; Regan, Brigid M.; Lawlor, James; Lagae, Lieven; Ceulemans, Berten; Bebin, E. Martina (December 2018). "Aberrant Inclusion of a Poison Exon Causes Dravet Syndrome and Related SCN1A-Associated Genetic Epilepsies". The American Journal of Human Genetics. 103 (6): 1022–1029. doi:10.1016/j.ajhg.2018.10.023. PMC   6288405 . PMID   30526861.
  41. 1 2 Voskobiynyk, Yuliya; Battu, Gopal; Felker, Stephanie A.; Cochran, J. Nicholas; Newton, Megan P.; Lambert, Laura J.; Kesterson, Robert A.; Myers, Richard M.; Cooper, Gregory M.; Roberson, Erik D.; Barsh, Gregory S. (2021-01-07). Shieh, Joseph (ed.). "Aberrant regulation of a poison exon caused by a non-coding variant in a mouse model of Scn1a-associated epileptic encephalopathy". PLOS Genetics. 17 (1): e1009195. doi: 10.1371/journal.pgen.1009195 . ISSN   1553-7404. PMC   7790302 . PMID   33411788.
  42. Bousset, Kristine; Donega, Stefano; Ameziane, Najim; Fleischhammer, Tabea; Ramachandran, Dhanya; Poley-Gil, Miriam; Schindler, Detlev; van de Laar, Ingrid M.; Pagani, Franco; Dörk, Thilo (2024-12-12). "A deep intronic mutation causes RAD50 deficiency through an unusual mechanism of distant exon activation". The Journal of Clinical Investigation: e178528. doi:10.1172/JCI178528. ISSN   1558-8238. PMID   39666384.
  43. Newman, Jeremy R. B.; Long, S. Alice; Speake, Cate; Greenbaum, Carla J.; Cerosaletti, Karen; Rich, Stephen S.; Onengut-Gumuscu, Suna; McIntyre, Lauren M.; Buckner, Jane H.; Concannon, Patrick (2023-09-27). "Shifts in isoform usage underlie transcriptional differences in regulatory T cells in type 1 diabetes". Communications Biology. 6 (1): 988. doi:10.1038/s42003-023-05327-7. ISSN   2399-3642. PMC   10533491 . PMID   37758901.
  44. Dalgliesh, Caroline; Aldalaqan, Saad; Atallah, Christian; Best, Andrew; Scott, Emma; Ehrmann, Ingrid; Merces, George; Mannion, Joel; Badurova, Barbora; Sandher, Raveen; Illing, Ylva; Wirth, Brunhilde; Wells, Sara; Codner, Gemma; Teboul, Lydia (2025-01-02). "An ultra-conserved poison exon in the Tra2b gene encoding a splicing activator is essential for male fertility and meiotic cell division". The EMBO Journal: 1–26. doi:10.1038/s44318-024-00344-6. ISSN   1460-2075. PMID   39748121.
  45. Goodwin, Sara; McPherson, John D.; McCombie, W. Richard (2016-05-17). "Coming of age: ten years of next-generation sequencing technologies". Nature Reviews. Genetics. 17 (6): 333–351. doi:10.1038/nrg.2016.49. ISSN   1471-0064. PMC   10373632 . PMID   27184599.
  46. Katsanis, Sara Huston; Katsanis, Nicholas (June 2013). "Molecular genetic testing and the future of clinical genomics". Nature Reviews Genetics. 14 (6): 415–426. doi:10.1038/nrg3493. ISSN   1471-0056. PMC   4461364 . PMID   23681062.
  47. Felker, Stephanie A.; Lawlor, James M.J.; Hiatt, Susan M.; Thompson, Michelle L.; Latner, Donald R.; Finnila, Candice R.; Bowling, Kevin M.; Bonnstetter, Zachary T.; Bonini, Katherine E.; Kelly, Nicole R.; Kelley, Whitley V.; Hurst, Anna C.E.; Rashid, Salman; Kelly, Melissa A.; Nakouzi, Ghunwa (August 2023). "Poison exon annotations improve the yield of clinically relevant variants in genomic diagnostic testing". Genetics in Medicine. 25 (8): 100884. doi:10.1016/j.gim.2023.100884. PMC   10524927 . PMID   37161864.
  48. Lynch, Danielle C.; Revil, Timothée; Schwartzentruber, Jeremy; Bhoj, Elizabeth J.; Innes, A. Micheil; Lamont, Ryan E.; Lemire, Edmond G.; Chodirker, Bernard N.; Taylor, Juliet P.; Zackai, Elaine H.; McLeod, D. Ross; Kirk, Edwin P.; Hoover-Fong, Julie; Fleming, Leah; Savarirayan, Ravi (2014-07-22). "Disrupted auto-regulation of the spliceosomal gene SNRPB causes cerebro–costo–mandibular syndrome". Nature Communications. 5 (1): 4483. Bibcode:2014NatCo...5.4483.. doi:10.1038/ncomms5483. ISSN   2041-1723. PMC   4109005 . PMID   25047197.
  49. Sheridan, Cormac (2024-08-01). "A new class of mRNA drugs targets poison exons". Nature Biotechnology. 42 (8): 1159–1161. doi:10.1038/s41587-024-02355-4. ISSN   1546-1696. PMID   39143167.
  50. 1 2 3 Prajapati, Sudeep; Cameron, Michael; Dunyak, Bryan M.; Shan, Mengge; Siu, Y. Amy; Levin-Furtney, Samantha; Powe, Joshua; Burchfiel, Eileen T.M.; Cabral, Sarah E.; Harney, Alycen M.; Keenan, Regina K.; Larpenteur, Kevin M.; Maag, Jesper L.V.; Snyder, Andrew R.; Nguyen, Dan T. (2023-11-02). "REM-422, a Potent, Selective, Oral Small Molecule mRNA Degrader of the MYB Oncogene, Demonstrates Anti-Tumor Activity in Mouse Xenograft Models of AML". Blood. 142 (Supplement 1): 1425. doi:10.1182/blood-2023-182676. ISSN   0006-4971.
  51. 1 2 Bhattacharyya, Anuradha; Trotta, Christopher R.; Narasimhan, Jana; Wiedinger, Kari J.; Li, Wencheng; Effenberger, Kerstin A.; Woll, Matthew G.; Jani, Minakshi B.; Risher, Nicole; Yeh, Shirley; Cheng, Yaofeng; Sydorenko, Nadiya; Moon, Young-Choon; Karp, Gary M.; Weetall, Marla (2021-12-15). "Small molecule splicing modifiers with systemic HTT-lowering activity". Nature Communications. 12 (1): 7299. Bibcode:2021NatCo..12.7299B. doi:10.1038/s41467-021-27157-z. ISSN   2041-1723. PMC   8674292 . PMID   34911927.
  52. 1 2 3 Lim, Kian Huat; Han, Zhou; Jeon, Hyun Yong; Kach, Jacob; Jing, Enxuan; Weyn-Vanhentenryck, Sebastien; Downs, Mikaela; Corrionero, Anna; Oh, Raymond; Scharner, Juergen; Venkatesh, Aditya; Ji, Sophina; Liau, Gene; Ticho, Barry; Nash, Huw (2020-07-09). "Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression". Nature Communications. 11 (1): 3501. Bibcode:2020NatCo..11.3501L. doi:10.1038/s41467-020-17093-9. ISSN   2041-1723. PMC   7347940 . PMID   32647108.
  53. Campagne, Sébastien; Boigner, Sarah; Rüdisser, Simon; Moursy, Ahmed; Gillioz, Laurent; Knörlein, Anna; Hall, Jonathan; Ratni, Hasane; Cléry, Antoine; Allain, Frédéric H.-T. (December 2019). "Structural basis of a small molecule targeting RNA for a specific splicing correction". Nature Chemical Biology. 15 (12): 1191–1198. doi:10.1038/s41589-019-0384-5. hdl:20.500.11850/381407. ISSN   1552-4450. PMC   7617061 . PMID   31636429.
  54. 1 2 Preußner, Marco; Smith, Heather L; Hughes, Daniel; Zhang, Min; Emmerichs, Ann-Kathrin; Scalzitti, Silvia; Peretti, Diego; Swinden, Dean; Neumann, Alexander; Haltenhof, Tom; Mallucci, Giovanna R; Heyd, Florian (2023-05-08). "ASO targeting RBM3 temperature-controlled poison exon splicing prevents neurodegeneration in vivo". EMBO Molecular Medicine. 15 (5): e17157. doi:10.15252/emmm.202217157. ISSN   1757-4676. PMC   10165353 . PMID   36946385.
  55. 1 2 Havens, Mallory A.; Hastings, Michelle L. (2016-06-10). "Splice-switching antisense oligonucleotides as therapeutic drugs". Nucleic Acids Research. 44 (14): 6549–6563. doi:10.1093/nar/gkw533. PMC   5001604 . PMID   27288447.
  56. Isom, Lori L.; Knupp, Kelly G. (July 2021). "Dravet Syndrome: Novel Approaches for the Most Common Genetic Epilepsy". Neurotherapeutics. 18 (3): 1524–1534. doi:10.1007/s13311-021-01095-6. PMC   8608987 . PMID   34378168.
  57. Han, Zhou; Chen, Chunling; Christiansen, Anne; Ji, Sophina; Lin, Qian; Anumonwo, Charles; Liu, Chante; Leiser, Steven C.; Meena; Aznarez, Isabel; Liau, Gene; Isom, Lori L. (2020-08-26). "Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome". Science Translational Medicine. 12 (558). doi:10.1126/scitranslmed.aaz6100. ISSN   1946-6234. PMID   32848094.
  58. Wengert, Eric R.; Wagley, Pravin K.; Strohm, Samantha M.; Reza, Nuha; Wenker, Ian C.; Gaykema, Ronald P.; Christiansen, Anne; Liau, Gene; Patel, Manoj K. (January 2022). "Targeted Augmentation of Nuclear Gene Output (TANGO) of Scn1a rescues parvalbumin interneuron excitability and reduces seizures in a mouse model of Dravet Syndrome". Brain Research. 1775: 147743. doi:10.1016/j.brainres.2021.147743. PMID   34843701.
  59. "An Open-Label Extension Study of STK-001 for Patients With Dravet Syndrome". 7 May 2024.
  60. "Stoke Therapeutics Receives FDA Breakthrough Therapy Designation for Zorevunersen for the Treatment of Dravet Syndrome".
  61. "Stoke Therapeutics Presents New Open-Label Extension (OLE) Study Data That Further Support the Potential for Zorevunersen as a Disease-Modifying Medicine for the Treatment of Dravet Syndrome".
  62. Feuerstein, Adam. "Why Stoke Therapeutics' Dravet syndrome drug is worth watching". STAT.
  63. Venkatesh, Aditya; McKenty, Taylor; Ali, Syed; Sonntag, Donna; Ravipaty, Shobha; Cui, Yanyan; Slate, Deirdre; Lin, Qian; Christiansen, Anne; Jacobson, Sarah; Kach, Jacob; Lim, Kian Huat; Srinivasan, Vaishnavi; Zinshteyn, Boris; Aznarez, Isabel (2024-10-01). "Antisense Oligonucleotide STK-002 Increases OPA1 in Retina and Improves Mitochondrial Function in Autosomal Dominant Optic Atrophy Cells". Nucleic Acid Therapeutics. 34 (5): 221–233. doi:10.1089/nat.2024.0022. ISSN   2159-3337. PMC  11564677. PMID   39264859.
  64. Levin-Furtney, Samantha; Thomas, Michael; Harney, Alycen M.; Shan, Mengge; Ivliev, Alexander; Stefek, Adam; Cameron, Michael; Prajapati, Sudeep; Seiler, Michael; Reynolds, Dominic; Buonamici, Silvia; Kung, Charles (2024-11-05). "REM-422, a Small Molecule MYB mRNA Degrader, Demonstrates Anti-Leukemic Activity As Monotherapy and in Combination with Standards of Care in Preclinical Models of AML". Blood. 66th ASH Annual Meeting Abstracts. 144: 826. doi:10.1182/blood-2024-208725. ISSN   0006-4971.
  65. "Study of REM-422 in Patients With Recurrent or Metastatic Adenoid Cystic Carcinoma". 19 November 2024.
  66. "Study of REM-422 in Patients With AML or Higher Risk MDS". 19 November 2024.
  67. Naryshkin, Nikolai A.; Weetall, Marla; Dakka, Amal; Narasimhan, Jana; Zhao, Xin; Feng, Zhihua; Ling, Karen K. Y.; Karp, Gary M.; Qi, Hongyan; Woll, Matthew G.; Chen, Guangming; Zhang, Nanjing; Gabbeta, Vijayalakshmi; Vazirani, Priya; Bhattacharyya, Anuradha (2014-08-08). "SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy". Science. 345 (6197): 688–693. Bibcode:2014Sci...345..688N. doi:10.1126/science.1250127. ISSN   0036-8075. PMID   25104390.
  68. Ratni, Hasane; Ebeling, Martin; Baird, John; Bendels, Stefanie; Bylund, Johan; Chen, Karen S.; Denk, Nora; Feng, Zhihua; Green, Luke; Guerard, Melanie; Jablonski, Philippe; Jacobsen, Bjoern; Khwaja, Omar; Kletzl, Heidemarie; Ko, Chien-Ping (2018-08-09). "Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 ( SMN2 ) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA)". Journal of Medicinal Chemistry. 61 (15): 6501–6517. doi:10.1021/acs.jmedchem.8b00741. ISSN   0022-2623. PMID   30044619.
  69. Fair, Benjamin; Buen Abad Najar, Carlos F.; Zhao, Junxing; Lozano, Stephanie; Reilly, Austin; Mossian, Gabriela; Staley, Jonathan P.; Wang, Jingxin; Li, Yang I. (September 2024). "Global impact of unproductive splicing on human gene expression". Nature Genetics. 56 (9): 1851–1861. doi:10.1038/s41588-024-01872-x. ISSN   1546-1718. PMC   11387194 . PMID   39223315.
  70. Xi, Simon; Soulard, Patricia; Li, Kai; Gu, Xiubin; Kay, Ibrahim; Hasson, Sam; Yates, Chris; Sadlish, Heather; Lee, Jay; Weng, Zhiping; Xu, Simon; Wager, Travis (2024-06-01). "Effect of RGT-61159 on inhibition of oncogene c-MYB synthesis and tumor growth inhibition in a broad range of ACC PDX models, at well tolerated doses in rodents and non-human primates". Journal of Clinical Oncology. 42 (16_suppl): 6107. doi:10.1200/JCO.2024.42.16_suppl.6107. ISSN   0732-183X.
  71. "Study of Safety and Efficacy of RGT-61159 in Adults with Relapsed/ Refractory Adenoid Cystic Carcinoma (ACC) or Colorectal Carcinoma (CRC)". 21 November 2024.
  72. Gao, Lan; Bhattacharyya, Anuradha; Beers, Brian; Kaushik, Diksha; Bredlau, Amy-Lee; Kristensen, Allan; Abd-Elaziz, Khalid; Grant, Richard; Golden, Lee; Kong, Ronald (2024-08-18). "Pharmacokinetics and pharmacodynamics of PTC518, an oral huntingtin lowering splicing modifier: A first-in-human study". British Journal of Clinical Pharmacology. 90 (12): 3242–3251. doi: 10.1111/bcp.16202 . ISSN   0306-5251. PMC   11602954 . PMID   39155237.
  73. "A Study to Evaluate the Safety and Efficacy of PTC518 in Participants With Huntington's Disease (HD)". 4 October 2024.
  74. "PTC Therapeutics Enters into a Global License and Collaboration Agreement with Novartis for PTC518 Huntington's Disease Program" (Press release). December 2, 2024.
  75. Yang, Runwei; Feng, Xinran; Arias-Cavieres, Alejandra; Mitchell, Robin M.; Polo, Ashleigh; Hu, Kaining; Zhong, Rong; Qi, Cai; Zhang, Rachel S.; Westneat, Nathaniel; Portillo, Cristabel A.; Nobrega, Marcelo A.; Hansel, Christian; Garcia III, Alfredo J.; Zhang, Xiaochang (May 2023). "Upregulation of SYNGAP1 expression in mice and human neurons by redirecting alternative splicing". Neuron. 111 (10): 1637–1650.e5. doi:10.1016/j.neuron.2023.02.021. PMC   10198817 . PMID   36917980.
  76. Kim, Young Jin; Sivetz, Nicole; Layne, Jessica; Voss, Dillon M.; Yang, Lucia; Zhang, Qian; Krainer, Adrian R. (2022-01-18). "Exon-skipping antisense oligonucleotides for cystic fibrosis therapy". Proceedings of the National Academy of Sciences. 119 (3). Bibcode:2022PNAS..11914858K. doi: 10.1073/pnas.2114858118 . ISSN   0027-8424. PMC   8784140 . PMID   35017301.