SCN2A

Last updated

SCN2A
Protein SCN2A PDB 1byy.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases SCN2A , BFIC3, BFIS3, BFNIS, EIEE11, HBA, HBSCI, HBSCII, NAC2, Na(v)1.2, Nav1.2, SCN2A1, SCN2A2, sodium voltage-gated channel alpha subunit 2, DEE11, EA9
External IDs OMIM: 182390; MGI: 98248; HomoloGene: 75001; GeneCards: SCN2A; OMA:SCN2A - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001040142
NM_001040143
NM_021007
NM_001371246
NM_001371247

Contents

NM_001099298
NM_001346679
NM_001346680

RefSeq (protein)

NP_001035232
NP_001035233
NP_066287
NP_001358175
NP_001358176

NP_001092768
NP_001333608
NP_001333609

Location (UCSC) Chr 2: 165.19 – 165.39 Mb Chr 2: 65.45 – 65.6 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Sodium channel protein type 2 subunit alpha, is a protein that in humans is encoded by the SCN2A gene. [5] Functional sodium channels contain an ion conductive alpha subunit and one or more regulatory beta subunits. Sodium channels which contain sodium channel protein type 2 subunit alpha are sometimes called Nav1.2 channels.

Function

Voltage-gated sodium channels are transmembrane glycoprotein complexes composed of a large alpha subunit with four domains including 24 transmembrane segments and one or more regulatory beta subunits. They are responsible for the generation and propagation of action potentials in neurons and muscle. This gene encodes one member of the sodium channel alpha subunit gene family. It is heterogeneously expressed in the brain, and mutations in this gene have been linked to several seizure disorders. Several alternatively spliced transcript variants of this gene have been described, but the full-length nature of some of these variants has not been determined. [5]

Clinical significance

Mutations in this gene have been implicated in cases of autism, [6] infantile spasms, bitemporal glucose hypometabolism, [7] and bipolar disorder. [8]

See also

Related Research Articles

Generalized epilepsy with febrile seizures plus (GEFS+) is a syndromic autosomal dominant disorder where affected individuals can exhibit numerous epilepsy phenotypes. GEFS+ can persist beyond early childhood. GEFS+ is also now believed to encompass three other epilepsy disorders: severe myoclonic epilepsy of infancy (SMEI), which is also known as Dravet's syndrome, borderline SMEI (SMEB), and intractable epilepsy of childhood (IEC). There are at least six types of GEFS+, delineated by their causative gene. Known causative gene mutations are in the sodium channel α subunit genes SCN1A, an associated β subunit SCN1B, and in a GABAA receptor γ subunit gene, in GABRG2 and there is another gene related with calcium channel the PCDH19 which is also known as Epilepsy Female with Mental Retardation. Penetrance for this disorder is estimated at 60%.

Dravet syndrome (DS), previously known as severe myoclonic epilepsy of infancy (SMEI), is an autosomal dominant genetic disorder which causes a catastrophic form of epilepsy, with prolonged seizures that are often triggered by hot temperatures or fever. It is very difficult to treat with anticonvulsant medications. It often begins before one year of age, with six months being the age that seizures, char­ac­ter­ized by prolonged convulsions and triggered by fever, usually begin.

Na<sub>v</sub>1.4 Protein found in humans

Sodium channel protein type 4 subunit alpha is a protein that in humans is encoded by the SCN4A gene.

SCN5A Protein-coding gene in the species Homo sapiens

Sodium channel protein type 5 subunit alpha, also known as NaV1.5 is an integral membrane protein and tetrodotoxin-resistant voltage-gated sodium channel subunit. NaV1.5 is found primarily in cardiac muscle, where it mediates the fast influx of Na+-ions (INa) across the cell membrane, resulting in the fast depolarization phase of the cardiac action potential. As such, it plays a major role in impulse propagation through the heart. A vast number of cardiac diseases is associated with mutations in NaV1.5 (see paragraph genetics). SCN5A is the gene that encodes the cardiac sodium channel NaV1.5.

Paralytic is a gene in the fruit fly, Drosophila melanogaster, which encodes a voltage gated sodium channel within D. melanogaster neurons. This gene is essential for locomotive activity in the fly. There are 9 different para alleles, composed of a minimum of 26 exons within over 78kb of genomic DNA. The para gene undergoes alternative splicing to produce subtypes of the channel protein. Flies with mutant forms of paralytic are used in fly models of seizures, since seizures can be easily induced in these flies.

<span class="mw-page-title-main">HADHB</span> Protein-coding gene in the species Homo sapiens

Trifunctional enzyme subunit beta, mitochondrial (TP-beta) also known as 3-ketoacyl-CoA thiolase, acetyl-CoA acyltransferase, or beta-ketothiolase is an enzyme that in humans is encoded by the HADHB gene.

Na<sub>v</sub>1.9 Protein-coding gene in the species Homo sapiens

Sodium channel, voltage-gated, type XI, alpha subunit also known as SCN11A or Nav1.9 is a voltage-gated sodium ion channel protein which is encoded by the SCN11A gene on chromosome 3 in humans. Like Nav1.7 and Nav1.8, Nav1.9 plays a role in pain perception. This channel is largely expressed in small-diameter nociceptors of the dorsal root ganglion and trigeminal ganglion neurons, but is also found in intrinsic myenteric neurons.

Ca<sub>v</sub>2.1 Protein found in humans

Cav2.1, also called the P/Q voltage-dependent calcium channel, is a calcium channel found mainly in the brain. Specifically, it is found on the presynaptic terminals of neurons in the brain and cerebellum. Cav2.1 plays an important role in controlling the release of neurotransmitters between neurons. It is composed of multiple subunits, including alpha-1, beta, alpha-2/delta, and gamma subunits. The alpha-1 subunit is the pore-forming subunit, meaning that the calcium ions flow through it. Different kinds of calcium channels have different isoforms (versions) of the alpha-1 subunit. Cav2.1 has the alpha-1A subunit, which is encoded by the CACNA1A gene. Mutations in CACNA1A have been associated with various neurologic disorders, including familial hemiplegic migraine, episodic ataxia type 2, and spinocerebellar ataxia type 6.

SCN1A Protein-coding gene in the species Homo sapiens

Sodium channel protein type 1 subunit alpha (SCN1A), is a protein which in humans is encoded by the SCN1A gene.

<span class="mw-page-title-main">ATP1A2</span> Protein-coding gene in the species Homo sapiens

Sodium/potassium-transporting ATPase subunit alpha-2 is a protein which in humans is encoded by the ATP1A2 gene.

<span class="mw-page-title-main">PRKAG2</span> Protein-coding gene in the species Homo sapiens

5'-AMP-activated protein kinase subunit gamma-2 is an enzyme that in humans is encoded by the PRKAG2 gene.

<span class="mw-page-title-main">Syntrophin, alpha 1</span> Protein-coding gene in the species Homo sapiens

Alpha-1-syntrophin is a protein that in humans is encoded by the SNTA1 gene. Alpha-1 syntrophin is a signal transducing adaptor protein and serves as a scaffold for various signaling molecules. Alpha-1 syntrophin contains a PDZ domain, two Pleckstrin homology domain and a 'syntrophin unique' domain.

<span class="mw-page-title-main">ATP1B1</span> Protein-coding gene in the species Homo sapiens

Sodium/potassium-transporting ATPase subunit beta-1 is an enzyme that in humans is encoded by the ATP1B1 gene.

<span class="mw-page-title-main">ATP1A3</span> Protein-coding gene in humans

Sodium/potassium-transporting ATPase subunit alpha-3 is an enzyme that in humans is encoded by the ATP1A3 gene.

<span class="mw-page-title-main">SCN3B</span> Protein-coding gene in the species Homo sapiens

Sodium channel subunit beta-3 is a protein that in humans is encoded by the SCN3B gene. Two alternatively spliced variants, encoding the same protein, have been identified.

<span class="mw-page-title-main">SCN1B</span> Protein-coding gene in the species Homo sapiens

Sodium channel subunit beta-1 is a protein that in humans is encoded by the SCN1B gene.

<span class="mw-page-title-main">SCN3A</span> Protein-coding gene in humans

Sodium channel, voltage-gated, type III, alpha subunit (SCN3A) is a protein that in humans is encoded by the SCN3A gene.

<span class="mw-page-title-main">CHRNA2</span> Protein-coding gene in the species Homo sapiens

Neuronal acetylcholine receptor subunit alpha-2, also known as nAChRα2, is a protein that in humans is encoded by the CHRNA2 gene. The protein encoded by this gene is a subunit of certain nicotinic acetylcholine receptors (nAchR).

<span class="mw-page-title-main">CACNG3</span> Protein-coding gene in humans

Voltage-dependent calcium channel gamma-3 subunit is a protein that in humans is encoded by the CACNG3 gene.

<span class="mw-page-title-main">KCNG3</span> Protein-coding gene in the species Homo sapiens

Potassium voltage-gated channel subfamily G member 3 is a protein that in humans is encoded by the KCNG3 gene. The protein encoded by this gene is a voltage-gated potassium channel subunit.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000136531 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000075318 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez Gene: SCN2A sodium channel, voltage-gated, type II, alpha subunit".
  6. Sanders SJ SJ, Murtha MT, Gupta AR, Murdoch JR, Raubeson MJ, Willsey AJ, Ercan-Sencicek AG, et al. (2012). "De novo mutations revealed by whole-exome sequencing are strongly associated with autism". Nature. 485 (7397): 237–241. Bibcode:2012Natur.485..237S. doi:10.1038/nature10945. PMC   3667984 . PMID   22495306.
  7. Sundaram SK, Chugani HT, Tiwari VN, Huq AH (July 2013). "SCN2A Mutation Is Associated With Infantile Spasms and Bitemporal Glucose Hypometabolism". Pediatr. Neurol. 49 (1): 46–9. doi:10.1016/j.pediatrneurol.2013.03.002. PMC   3868437 . PMID   23827426.
  8. Bipolar Disorder Working Group of the Psychiatric Genomics Consortium, et al. (2019). "Genome-wide association study identifies 30 loci associated with bipolar disorder". Nature Genetics. 51 (5): 793–803. doi:10.1038/s41588-019-0397-8. hdl: 10481/58017 . PMC   6956732 . PMID   31043756.

Further reading

Patient Organizations

The SCN2A Foundation

SCN2A Asia Pacific

SCN2A Germany e. V.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.