Poloxamer 407

Last updated
Poloxamer 407
Poloxamere General Formula V2.svg
Skeleton formula of poloxameres, where poloxamer 407 has block lengths of a = 101 and b = 56
Names
IUPAC name
Oxirane, methyl-, polymer with oxirane
Other names
  • Pluronic F-127
  • Synperonic PE/F-127
  • Kolliphor P 407
  • Poloxalene
Identifiers
DrugBank
PubChem CID
UNII
Properties
C
572
H
1146
O
259
Molar mass 12,600 g/mol
Appearancewhite powder
Melting point 53–57 °C (127–135 °F; 326–330 K)
very soluble
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g. sodium chlorideFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
0
1
0
Safety data sheet (SDS) Kolliphor P 407
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Poloxamer 407 is a hydrophilic non-ionic surfactant of the more general class of copolymers known as poloxamers. Poloxamer 407 is a triblock copolymer consisting of a central hydrophobic block of polypropylene glycol flanked by two hydrophilic blocks of polyethylene glycol (PEG). The approximate lengths of the two PEG blocks is 101 repeat units, while the approximate length of the propylene glycol block is 56 repeat units. [1] This particular compound is also known by the BASF trade name Pluronic F-127 or by the Croda trade name Synperonic PE/F 127. BASF also offers a pharmaceutical grade, under trade name Kolliphor P 407. [2]

Contents

Uses

Most of the common uses of poloxamer 407 are related to its surfactant properties. For example, it is widely used in cosmetics for dissolving oily ingredients in water. It can also be found in multi-purpose contact lens cleaning solutions, where its purpose there is to help remove lipid films from the lens. It can also be found in some mouthwashes. There is research ongoing for using poloxamer 407 for aligning severed blood vessels before gluing them surgically. [3] Poloxamer 407 can also be used for its thermogelling properties in aqueous media.

Poloxamer 407 is approved by the FDA for use as an excipient in a range of pharmaceutical dosage forms, and is listed in the Inactive Ingredient Database (IID). [4]

Poloxamer 407 is used in bioprinting applications due to its unique phase-change properties. [5] In a 30% solution by weight, poloxamer 407 forms a gel solid at room temperature but liquifies when chilled to 4 °C (39 °F). This allows poloxamer 407 to serve as a removable support material, particularly for creating hollow channels or cavities inside hydrogels. [6] [7] In this role, it is often referred to as a "sacrificial ink" or a "fugitive ink".

Reports of adverse effects

It was reported in The Australian newspaper 18 November 2006 that this common ingredient in toothpaste and mouthwash can cause high cholesterol in mice. [8] A team from the Centre for Ageing and the ANZAC Research Institute in Sydney used it as a tool to demonstrate that cells in the liver behave like a sieve. They gave a high dose (1 gram per kilogram of body weight) of poloxamer 407 to mice, which blocked 80% of the pores in liver cells that absorb lipoproteins, leading to a 10-fold increase in plasma lipid levels. [9] However, the dose used is far higher than a person would be exposed to in toothpaste or mouthwash.

Potential degradation by sonication

Wang et al. [10] reported that aqueous solutions of poloxamer 188 and poloxamer 407 sonicated in the presence or absence of multi-walled carbon nanotubes (MWNTs) can become highly toxic to cultured cells. The toxicity correlated with the sonolytic degradation of the polymers.

Related Research Articles

<span class="mw-page-title-main">Polyvinylpyrrolidone</span> Water-soluble polymer

Polyvinylpyrrolidone (PVP), also commonly called polyvidone or povidone, is a water-soluble polymer compound made from the monomer N-vinylpyrrolidone. PVP is available in a range of molecular weights and related viscosities, and can be selected according to the desired application properties.

Sodium dodecyl sulfate (SDS) or sodium lauryl sulfate (SLS), sometimes written sodium laurilsulfate, is an organic compound with the formula CH3(CH2)11OSO3Na and structure H3C(CH2)11−O−S(=O)2−ONa+. It is an anionic surfactant used in many cleaning and hygiene products. This compound is the sodium salt of the 12-carbon organosulfate. Its hydrocarbon tail combined with a polar "headgroup" give the compound amphiphilic properties that make it useful as a detergent. SDS is also component of mixtures produced from inexpensive coconut and palm oils. SDS is a common component of many domestic cleaning, personal hygiene and cosmetic, pharmaceutical, and food products, as well as of industrial and commercial cleaning and product formulations.

<span class="mw-page-title-main">Surfactant</span> Substance that lowers the surface tension between a liquid and another material

Surfactants are chemical compounds that decrease the surface tension or interfacial tension between two liquids, a liquid and a gas, or a liquid and a solid. The word "surfactant" is a blend of surface-active agent, coined in 1950. As they consist of a water-repellent and a water-attracting part, they enable water and oil to mix; they can form foam and facilitate the detachment of dirt.

<span class="mw-page-title-main">Polyethylene glycol</span> Chemical compound

Polyethylene glycol (PEG; ) is a polyether compound derived from petroleum with many applications, from industrial manufacturing to medicine. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), depending on its molecular weight. The structure of PEG is commonly expressed as H−(O−CH2−CH2)n−OH.

<span class="mw-page-title-main">Toothpaste</span> Substance to clean and maintain teeth

Toothpaste is a paste or gel dentifrice used with a toothbrush to clean and maintain the aesthetics and health of teeth. Toothpaste is used to promote oral hygiene: it is an abrasive that aids in removing dental plaque and food from the teeth, assists in suppressing halitosis, and delivers active ingredients to help prevent tooth decay and gum disease (gingivitis). Owing to differences in composition and fluoride content, not all toothpastes are equally effective in maintaining oral health. The decline of tooth decay during the 20th century has been attributed to the introduction and regular use of fluoride-containing toothpastes worldwide. Large amounts of swallowed toothpaste can be poisonous. Common colors for toothpaste include white and blue.

<span class="mw-page-title-main">Micelle</span> Group of fatty molecules suspended in liquid by soaps and/or detergents

A micelle or micella is an aggregate of surfactant amphipathic lipid molecules dispersed in a liquid, forming a colloidal suspension. A typical micelle in water forms an aggregate with the hydrophilic "head" regions in contact with surrounding solvent, sequestering the hydrophobic single-tail regions in the micelle centre.

<span class="mw-page-title-main">Benzalkonium chloride</span> Surfactant and antiseptic agent

Benzalkonium chloride, also known as alkyldimethylbenzylammonium chloride (ADBAC) and by the trade name Zephiran, is a type of cationic surfactant. It is an organic salt classified as a quaternary ammonium compound. ADBACs have three main categories of use: as a biocide, a cationic surfactant, and a phase transfer agent. ADBACs are a mixture of alkylbenzyldimethylammonium chlorides, in which the alkyl group has various even-numbered alkyl chain lengths.

In organic chemistry, ethoxylation is a chemical reaction in which ethylene oxide adds to a substrate. It is the most widely practiced alkoxylation, which involves the addition of epoxides to substrates.

In biotechnology, polymersomes are a class of artificial vesicles, tiny hollow spheres that enclose a solution. Polymersomes are made using amphiphilic synthetic block copolymers to form the vesicle membrane, and have radii ranging from 50 nm to 5 μm or more. Most reported polymersomes contain an aqueous solution in their core and are useful for encapsulating and protecting sensitive molecules, such as drugs, enzymes, other proteins and peptides, and DNA and RNA fragments. The polymersome membrane provides a physical barrier that isolates the encapsulated material from external materials, such as those found in biological systems.

<span class="mw-page-title-main">Diethylene glycol</span> Chemical compound

Diethylene glycol (DEG) is an organic compound with the formula (HOCH2CH2)2O. It is a colorless, practically odorless, and hygroscopic liquid with a sweetish taste. It is a four carbon dimer of ethylene glycol. It is miscible in water, alcohol, ether, acetone, and ethylene glycol. DEG is a widely used solvent. It can be a normal ingredient in various consumer products, and it can be a contaminant. DEG has also been misused to sweeten wine and beer, and to viscosify oral and topical pharmaceutical products. Its use has resulted in many epidemics of poisoning since the early 20th century.

<span class="mw-page-title-main">Polypropylene glycol</span> Chemical compound

Polypropylene glycol or polypropylene oxide is the polymer of propylene glycol. Chemically it is a polyether, and, more generally speaking, it's a polyalkylene glycol (PAG) H S Code 3907.2000. The term polypropylene glycol or PPG is reserved for polymer of low- to medium-range molar mass when the nature of the end-group, which is usually a hydroxyl group, still matters. The term "oxide" is used for high-molar-mass polymer when end-groups no longer affect polymer properties. Between 60 and 70% of propylene oxide is converted to polyether polyols by the process called alkoxylation.

<span class="mw-page-title-main">Amphiphile</span> Chemical compound with both hydrophilic and lipophilic properties

In chemistry, an amphiphile, or amphipath, is a chemical compound possessing both hydrophilic and lipophilic properties. Such a compound is called amphiphilic or amphipathic. Amphiphilic compounds include surfactants and detergents. The phospholipid amphiphiles are the major structural component of cell membranes.

<span class="mw-page-title-main">Polysorbate 80</span> Nonionic surfactant and emulsifier used in food and cosmetics

Polysorbate 80 is a nonionic surfactant and emulsifier often used in pharmaceuticals, foods, and cosmetics. This synthetic compound is a viscous, water-soluble yellow liquid.

Polysorbate 20 is a polysorbate-type nonionic surfactant formed by the ethoxylation of sorbitan monolaurate. Its stability and relative nontoxicity allows it to be used as a detergent and emulsifier in a number of domestic, scientific, and pharmacological applications. As the name implies, the ethoxylation process leaves the molecule with 20 repeat units of polyethylene glycol; in practice these are distributed across 4 different chains, leading to a commercial product containing a range of chemical species.

Poloxamers are nonionic triblock copolymers composed of a central hydrophobic chain of polyoxypropylene flanked by two hydrophilic chains of polyoxyethylene. The word poloxamer was coined by BASF inventor, Irving Schmolka, who received the patent for these materials in 1973. Poloxamers are also known by the trade names Pluronic, Kolliphor, and Synperonic.

The discovery of HMG-CoA (3-hydroxy-3-methylglutaryl-CoA) reductase inhibitors, called statins, was a breakthrough in the prevention of hypercholesterolemia and related diseases. Hypercholesterolemia is considered to be one of the major risk factors for atherosclerosis which often leads to cardiovascular, cerebrovascular and peripheral vascular diseases. The statins inhibit cholesterol synthesis in the body and that leads to reduction in blood cholesterol levels, which is thought to reduce the risk of atherosclerosis and diseases caused by it.

Pluronic P123 is a symmetric triblock copolymer comprising poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) in an alternating linear fashion, PEO-PPO-PEO. The unique characteristic of PPO block, which is hydrophobic at temperatures above 288 K and is soluble in water at temperatures below 288 K, leads to the formation of micelle consisting of PEO-PPO-PEO triblock copolymers. Some studies report that the hydrophobic core contains PPO block, and a hydrophilic corona consists of PEO block. In 30wt% aqueous solution Pluronic P123 forms a cubic gel phase.

<span class="mw-page-title-main">Lipid-based nanoparticle</span> Novel drug delivery system

Lipid-based nanoparticles are very small spherical particles composed of lipids. They are a novel pharmaceutical drug delivery system, and a novel pharmaceutical formulation. There are many subclasses of lipid-based nanoparticles such as: lipid nanoparticles (LNPs), solid lipid nanoparticles (SLNs), and nanostructured lipid carriers (NLCs).

Bio-inks are materials used to produce engineered/artificial live tissue using 3D printing. These inks are mostly composed of the cells that are being used, but are often used in tandem with additional materials that envelope the cells. The combination of cells and usually biopolymer gels are defined as a bio-ink. They must meet certain characteristics, including such as rheological, mechanical, biofunctional and biocompatibility properties, among others. Using bio-inks provides a high reproducibility and precise control over the fabricated constructs in an automated manner. These inks are considered as one of the most advanced tools for tissue engineering and regenerative medicine (TERM).

<span class="mw-page-title-main">Alexander Kabanov (chemist)</span>

Alexander Viktorovich Kabanov, is a Russian and American chemist, an educator, an entrepreneur, and a researcher in the fields of drug delivery and nanomedicine.

References

  1. Tania Betancourt; The University of Texas at Austin. Biomedical Engineering (2007). Targetable biodegradable nanoparticles for delivery of chemotherapeutic and imaging agents to ovarian cancer. pp. 130–. ISBN   978-0-549-34761-3 . Retrieved 16 August 2011.
  2. "Poloxamers for Pharmaceutical Applications". BASF Pharma. Retrieved 2022-06-11.
  3. Stanford University Medical Center (28 August 2011). "Sutureless method for joining blood vessels invented". ScienceDaily.
  4. "Inactive Ingredient Search for Approved Drug Products". www.accessdata.fda.gov. Retrieved 2022-06-11.
  5. Gopinathan, Janarthanan (2018). "Recent trends in bioinks for 3D printing". Biomaterials Research. 22 (1): 11. doi: 10.1186/s40824-018-0122-1 . PMC   5889544 . PMID   29636985.
  6. Homan, Kimberly A.; Lewis, Jennifer A (2016). "Bioprinting of 3D Convoluted Renal Proximal Tubules on Perfusable Chips". Scientific Reports. 6: 34845. doi:10.1038/srep34845. PMC   5057112 . PMID   27725720.
  7. Kang, Hyun-Wook; Atala, Anthony (2016). "A 3D bioprinting system to produce human-scale tissue constructs with structural integrity". Nature Biotechnology. 34 (3): 312–9. doi:10.1038/nbt.3413. PMID   26878319.
  8. O'Neill, Craig (18 November 2006). "Dental hygiene gives you a brush with cholesterol". The Australian.
  9. Cogger, VC; Hilmer, SN; Sullivan, D; Muller, M; Fraser, R; Le Couteur, DG (December 2006). "Hyperlipidemia and surfactants: the liver sieve is a link". Atherosclerosis. 189 (2): 273–81. doi:10.1016/j.atherosclerosis.2005.12.025. PMID   16458315.
  10. Wang, Ruhung; Hughes, Tyler; Beck, Simon; Vakil, Samee; Li, Synyoung; Pantano, Paul; Draper, Rockford K. (2013). "Generation of toxic degradation products by sonication of Pluronic® dispersants: implications for nanotoxicity testing". Nanotoxicology. 7 (7): 1272–1281. doi:10.3109/17435390.2012.736547. ISSN   1743-5390. PMC   3657567 . PMID   23030523.