Polybenzoxazine

Last updated
3-Phenyl-2,4-dihydro-1,3-benzoxazine monomer
3-phenyl-3,4-dihydro-2H-1,3-benzoxazine.svg
Names
IUPAC name
3-Phenyl-2,4-dihydro-1,3-benzoxazine
Identifiers
3D model (JSmol)
ChEMBL
PubChem CID
UNII
  • InChI=1S/C14H13NO/c1-2-7-13(8-3-1)15-10-12-6-4-5-9-14(12)16-11-15/h1-9H,10-11H2
    Key: FMZPVXIKKGVLLV-UHFFFAOYSA-N
  • monomer:C1C2=CC=CC=C2OCN1C3=CC=CC=C3
Properties
C14H13NO
Molar mass 211.264 g·mol−1
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H317
P261, P264, P272, P280, P302+P352, P321, P332+P313, P333+P313, P362, P363, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Polybenzoxazines, also called benzoxazine resins, are cured polymerization products derived from benzoxazine monomers.

Contents

Monomers

Benzoxazines are bicyclic heterocyclic compounds containing one oxygen and one nitrogen atom in a doubly unsaturated six-member ring, specifically a 1,3-oxazine ring, fused with a benzene ring. The systematic IUPAC name of the prototypical unsubstituted monomer is 3,4-dihydro-3-phenyl-2H-1,3-benzoxazine. Benzoxazines are products of condensation between an amine, a phenol and formaldehyde, used to produce thermoset resins or thermosetting polymer. Because of the wide availability and low-cost of starting materials (amines, phenols and formaldehyde), as well as ease of preparation (one-pot reaction) diverse benzoxazines are available. Numerous research focus on the different curing temperature, and polymer properties, such as cross-linking, from benzoxazines derived from substituted phenols.[ citation needed ]

Commercial benzoxazines by Huntsman are based on bisphenols: bisphenol-A, bisphenol-F, thiodiphenol or dicyclopentadienediphenol. [1]

Synthesis

Benzoxazines can be prepared by a one-pot process by heating an aromatic amine, a phenol and formaldehyde. Alternatively, they can be prepared sequentially.[ citation needed ]

Curing

Curing of benzoxazines takes place by thermal ring-opening polymerisation with or without catalyst. (Catalysts reduce curing temperature.) Benzoxazines can be homopolymerized to yield rigid materials, or can be copolymerized with other monomers to tune properties.[ citation needed ]

Polymers

The result of heating up benzoxazine monomers is a high molecular weight thermoset polymer matrix. Composites of it are used where enhanced mechanical performance, flame and fire resistance compared to epoxy and phenolic resins is required. [2] Polybenzoxazines are a class of halogen-free high-performance polymers.

The main applications of polybenzoxazines resins are in fibre-reinforced plastic and as adhesives. They are substitutes of epoxy, phenolic and bismaleimide resins. Because of their superior resistance to chemicals, low flammability, and excellent heat stability, they are used for components that are exposed to high temperatures and corrosive media. Examples include chemical and heat resistant coatings, adhesives, prepregs, and encapsulants as well as halogen-free laminates for printed circuit boards. Polybenzoxazines are also used in the automotive and aerospace industries for applications where superior thermal and mechanical properties relative to conventional resins are required.[ citation needed ]

Copolymers

It has been reported that it is possible to copolymerize benzoxazines with other monomers such as epoxy and urethane. [3] [4] This copolymerization could lead to higher crosslink network density and, consequently, to improvement in properties. [5] In fact, experimental data reveals improvement in thermal properties. Glass transition temperature and degradation were improved by the copolymerization. [6]

Advantages

See also

Related Research Articles

<span class="mw-page-title-main">Petrochemical</span> Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

<span class="mw-page-title-main">Epoxy</span> Type of material

Epoxy is the family of basic components or cured end products of epoxy resins. Epoxy resins, also known as polyepoxides, are a class of reactive prepolymers and polymers which contain epoxide groups. The epoxide functional group is also collectively called epoxy. The IUPAC name for an epoxide group is an oxirane.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

<span class="mw-page-title-main">Phenol formaldehyde resin</span> Chemical compound

Phenol formaldehyde resins (PF) are synthetic polymers obtained by the reaction of phenol or substituted phenol with formaldehyde. Used as the basis for Bakelite, PFs were the first commercial synthetic resins. They have been widely used for the production of molded products including billiard balls, laboratory countertops, and as coatings and adhesives. They were at one time the primary material used for the production of circuit boards but have been largely replaced with epoxy resins and fiberglass cloth, as with fire-resistant FR-4 circuit board materials.

Urea-formaldehyde (UF), also known as urea-methanal, so named for its common synthesis pathway and overall structure, is a nontransparent thermosetting resin or polymer. It is produced from urea and formaldehyde. These resins are used in adhesives, plywood, particle board, medium-density fibreboard (MDF), and molded objects. In agriculture, urea-formaldehyde compounds are one of the most commonly used types of slow-release fertilizer.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

Wood glue is an adhesive used to tightly bond pieces of wood together. Many substances have been used as glues. Traditionally animal proteins like casein from milk or collagen from animal hides and bones were boiled down to make early glues. They worked by solidifying as they dried. Later, glues were made from plant starches like flour or potato starch. When combined with water and heated, the starch gelatinizes and forms a sticky paste as it dries. Plant-based glues were common for books and paper products, though they can break down more easily over time compared to animal-based glues. Examples of modern wood glues include polyvinyl acetate (PVA) and epoxy resins. Some resins used in producing composite wood products may contain formaldehyde. As of 2021, “the wood panel industry uses almost 95% of synthetic petroleum-derived thermosetting adhesives, mainly based on urea, phenol, and melamine, among others”.

<span class="mw-page-title-main">Photopolymer</span>

A photopolymer or light-activated resin is a polymer that changes its properties when exposed to light, often in the ultraviolet or visible region of the electromagnetic spectrum. These changes are often manifested structurally, for example hardening of the material occurs as a result of cross-linking when exposed to light. An example is shown below depicting a mixture of monomers, oligomers, and photoinitiators that conform into a hardened polymeric material through a process called curing.

Synthetic resins are industrially produced resins, typically viscous substances that convert into rigid polymers by the process of curing. In order to undergo curing, resins typically contain reactive end groups, such as acrylates or epoxides. Some synthetic resins have properties similar to natural plant resins, but many do not.

<span class="mw-page-title-main">Melamine resin</span> Hard, thermosetting plastic material often used in dinnerware

Melamine resin or melamine formaldehyde is a resin with melamine rings terminated with multiple hydroxyl groups derived from formaldehyde. This thermosetting plastic material is made from melamine and formaldehyde. In its butylated form, it is dissolved in n-butanol and xylene. It is then used to cross-link with alkyd, epoxy, acrylic, and polyester resins, used in surface coatings. There are many types, varying from very slow to very fast curing.

Polymer engineering is generally an engineering field that designs, analyses, and modifies polymer materials. Polymer engineering covers aspects of the petrochemical industry, polymerization, structure and characterization of polymers, properties of polymers, compounding and processing of polymers and description of major polymers, structure property relations and applications.

<span class="mw-page-title-main">Cyanate ester</span> Chemical compounds with an –OCN group

Cyanate esters are chemical compounds in which the hydrogen atom of the cyanic acid is replaced by an organyl group. The resulting compound is termed a cyanate ester, with the formula R−O−C≡N, where R is an organyl group. Cyanate esters contain a monovalent cyanate group −O−C≡N.

A thermoset polymer matrix is a synthetic polymer reinforcement where polymers act as binder or matrix to secure in place incorporated particulates, fibres or other reinforcements. They were first developed for structural applications, such as glass-reinforced plastic radar domes on aircraft and graphite-epoxy payload bay doors on the Space Shuttle.

<span class="mw-page-title-main">Benzoxazine</span>

Benzoxazines are a group of isomeric bicyclic heterocyclic chemical compounds that consist of a benzene ring fused to an oxazine ring. The different isomers depend on the relative positions of the oxygen and nitrogen atoms in the oxazine ring, on the location of ring fusion, and on the position of the double bond in the oxazine ring. They have the molecular formula C8H7NO.

Vitrimers are a class of plastics, which are derived from thermosetting polymers (thermosets) and are very similar to them. Vitrimers consist of molecular, covalent networks, which can change their topology by thermally activated bond-exchange reactions. At high temperatures, they can flow like viscoelastic liquids; at low temperatures, the bond-exchange reactions are immeasurably slow (frozen), and the Vitrimers behave like classical thermosets at this point. Vitrimers are strong glass formers. Their behavior opens new possibilities in the application of thermosets, such as a self-healing material or simple processibility in a wide temperature range.

Expanding monomers are monomers which increase in volume (expand) during polymerization. They can be added to monomer formulations to counteract the usual volume shrinking to manufacture products with higher quality and durability. Volume Shrinkage is in first line for the unmeltable thermosets a problem, since those are of fixed shape after polymerization completed.

<span class="mw-page-title-main">3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate</span> Chemical compound

3,4-Epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate (ECC) is a cycloaliphatic epoxy resin which is used in many industrial applications. It reacts by cationic polymerization using thermolatent photoinitiators to form crosslinked insoluble thermosets. Formulations based on cycloaliphatic epoxy resins such as ECC are known to form by curing thermosets with high heat and chemical resistance and good adhesion.

In materials science, a polymer matrix composite (PMC) is a composite material composed of a variety of short or continuous fibers bound together by a matrix of organic polymers. PMCs are designed to transfer loads between fibers of a matrix. Some of the advantages with PMCs include their light weight, high resistance to abrasion and corrosion, and high stiffness and strength along the direction of their reinforcements.

<span class="mw-page-title-main">Furan resin</span>

Furan resin refers to polymers produced from various furan compounds, of which the most common starting materials are furfuryl alcohol and furfural. In the resin and in the cured polyfurfurol, the furan rings are not connected by conjugation. The resins are generally used as binders for sand castings. The furan monomer is typically converted to a free-flowing resin with mild acid catalysis. Curing is achieved using strong acid.

<span class="mw-page-title-main">Trimethylolpropane triglycidyl ether</span> Chemical compound

Trimethylolpropane triglycidyl ether (TMPTGE) is an organic chemical in the glycidyl ether family. It has the formula C15H26O6 and the IUPAC name is 2-[2,2-bis(oxiran-2-ylmethoxymethyl)butoxymethyl]oxirane, and the CAS number 3454-29-3. It also has another CAS number of 30499-70-8 A key use is as a modifier for epoxy resins as a reactive diluent.

References

  1. "Benzoxazine Thermoset Resins" (PDF). Huntsman. 2015. Archived from the original (PDF) on 21 April 2015.[ verification needed ]
  2. Handbook of Benzoxazine Resins, ed. Hatsuo Ishida And Tarek Agag, Elsevier B.V., 2011, ISBN   978-0-444-53790-4 [ page needed ]
  3. Moon, J.H.; Shul, Y.G.; Han, H.S.; Hong, S.Y.; Choi, Y.S.; Kim, H.T. (August 2005). "A study on UV-curable adhesives for optical pick-up: I. Photo-initiator effects". International Journal of Adhesion and Adhesives. 25 (4): 301–312. doi:10.1016/j.ijadhadh.2004.09.003.
  4. Rimdusit, Sarawut; Kunopast, Pathomkorn; Dueramae, Isala (September 2011). "Thermomechanical properties of arylamine-based benzoxazine resins alloyed with epoxy resin". Polymer Engineering & Science. 51 (9): 1797–1807. doi:10.1002/pen.21969.
  5. Ishida, Hatsuo; Allen, Douglas J. (1996). "Physical and mechanical characterization of near-zero shrinkage polybenzoxazines". Journal of Polymer Science Part B: Polymer Physics. 34 (6): 1019–1030. Bibcode:1996JPoSB..34.1019I. doi:10.1002/(SICI)1099-0488(19960430)34:6<1019::AID-POLB1>3.0.CO;2-T.
  6. de Souza, Lucio Rossi; d’Almeida, José Roberto M.; Cheng, Xiang; Rong, Li-Han; Caldona, Eugene B.; Advincula, Rigoberto C. (1 March 2022). "Highly thermally stable copolymers of epoxy and trifunctional polybenzoxazine". Materials Today Communications. 30: 102988. doi: 10.1016/j.mtcomm.2021.102988 . ISSN   2352-4928. S2CID   244430189.
  7. "Properties of Polybenzoxazines". Polymerdatabase.com. Archived from the original on 2021-03-06. Retrieved 2020-01-20.