Pratylenchus brachyurus | |
---|---|
Scientific classification | |
Kingdom: | Animalia |
Phylum: | Nematoda |
Class: | Secernentea |
Order: | Tylenchida |
Family: | Pratylenchidae |
Genus: | Pratylenchus |
Species: | P. brachyurus |
Binomial name | |
Pratylenchus brachyurus | |
Synonyms | |
Pratylenchus brachyurus is a plant parasitic nematode.
Pratylenchus brachyurus, like many other plant-parasitic nematodes, are microscopic worms that can be damaging to many agricultural crops. Across the world, many billions of dollars each year are lost due to the damaging abilities of nematodes on cash crops. [1] P. brachyurus is a migratory endoparasite [2] that enters the roots and moves throughout the root tissue while completing its life cycle.
Under the old classification system based on morphology, these nematodes were under the Class Adenophorea. This changed in 2004 when a new classification system was presented by De Ley and Blaxter using SSU rDNA for comparison between different species of nematodes. Using this new system, De Ley and Blaxter placed P. brachyurus in the Class Chromadorea, Order Rhabditida. [3] In 1929 Godfrey first described P. brachyurus as the main cause for pineapple-root disease and called them Tylenchus brachyurus. He also discussed several other nematodes which were all later put into the genus Pratylenchus. [4] In 1934, Filipjev proposed the genus Pratylenchus. This proposed new genus name came with some challenges because the International Code of Zoological Nomenclature states that the new genus name must come with a statement as to why you want to change the name. It must also give reasons differentiating the new genus plus give the name of the type species. In 1936 the new genus name was universally accepted. [5] [6] [7]
This nematode is a migratory endoparasite that ranges from about 0.4 to 0.5 millimetres (1⁄64 to 3⁄128 in) long and has a lip region that is angular and offset from the body. [8] It is generally low and flat and has two distinct annules. P. brachyurus has a short strong stylet about 20 um long and large round basal knobs. It also has a short ventral overlap of the esophagus. The females have lateral fields marked by four incisures. Males are very rare and have one single outstretched testis. [9] [10]
Pratylenchus are second only behind Meloidogyne in terms of crops infested and the extent of crop damage and loss. Pratylenchus brachyurus is widely spread throughout the warmer regions of the world. [11] In Brazil it is the most widely distributed root lesion nematode on coffee. They introduce necrosis in the cortex of the root which is detrimental to the plant. Lesion nematodes severely damage a plant and open points of entry for other bacteria and fungus to enter the root. [12] In the US it is mainly found in southern regions and in Florida it is found in nearly every county. A study in 1969 showed that it is found in 90% of the citrus groves in Florida. [13] Due to P. brachyurus being able to infest a wide range of crops and being so damaging, it is of high economic importance.[ citation needed ]
P. brachyurus causes severe losses in maize (corn) in Western Nigeria and South Africa among other areas. [14]
These nematodes have the general nematode life cycle with four juvenile stages keeping their vermiform shape throughout the entire life cycle except the egg stage. Any of the stages, except the egg and J1 which molts inside the egg, can infect the root. The nematodes get inside the roots and move throughout the root laying eggs individually in the root cortex and maybe a few in the soil. This particular species of Pratylenchus reproduces by parthenogenesis. The males of this species have not been found very often. [15]
P. brachyurus can infest a wide range of crops. Peanuts, pineapple, soybeans, sugar cane, tomatoes, citrus, and cotton are just a few of the crops it can infest. With such a wide range of hosts, P. brachyurus is an important nematode for scientist to study and try to develop a resistant variety of its host plants. The problem with P. brachyurus is that not too much is known about it and many of the reports available contradict each other. In 2001 in Nematropica, it was stated that the host range of these nematodes has not been determined meaning that crop rotation as a way to manage these pest could prove to be difficult. [16] In 2012, the Journal of Cotton Science reported that this nematode is found in cotton fairly often but its pathogenicity is still in question. The variety of cotton used in the study seemed to be tolerant of the nematode and it only slightly affected the growth of the plant. [17] Some varieties of cotton are intolerant to these nematodes so a farmer would want to try and plant tolerant varieties. When nematodes infest a root, they can open up the root to many other pathogens including bacteria and fungus. There have been numerous reports of nematodes interacting with Fusarium spp as well as many other fungi. [18] Two scientists by the names of Michell and Powell presented evidence in their study that P. brachyurus can increase the incidence of Fusarium Wilt in cotton. [19]
Many different methods to control nematodes have been tried over the years. Some have proven more successful and others have not. Some of these methods include nematicides, cover crops, crop rotation, genetically modified plants and seed treatments. In soybeans, Essex is a tolerant cultivar whereas Forrest is sensitive. Essex has a higher yield in fields that are infested with the nematode. The plots in this study by Koenning were treated with aldicarb, carbofuran, and fenamiphos and had less nematodes 40 days post planting then the areas that were not treated. The plots that were planted with Forrest which is the sensitive cultivar and treated with carbofuran had a higher yield than untreated control plots. Damage threshold levels have not been well established but using fumigated plots has shown significant increases in yield. [20] In Brazil, many crops are planted under the no tillage planting system. This typically causes of buildup of polyphagous species of nematodes like P. brachyurus. [21] If a no till system is being used, planting cover crops that would decrease the density of the nematodes may be needed. The problem with that is there is contradictory information regarding P. brachyurus and which plants are poor or good hosts. Due to this very same reason, farmers would have to be very careful in choosing a crop rotation schedule as well. [22] In 1992 Vast demonstrated that arbuscular mycorrhizal fungi could enhanced the plant’s resistance to nematodes by being a physical barrier. [23] This would be something that could be used as a seed treatment to protect the newly emerging seedlings from being infested.[ citation needed ]
As with many other nematodes that cause crop loss, we need to continue to move forward in the study of these nematodes. Many of the managements tools used are very contradictory in studies and no good management strategy has been established. This nematode is so widespread and has such a wide range of hosts that several different management strategies will have to be developed based on the specific crop and area. Hopefully one day we will be able to develop a gene that can be put into plants to defend them against these nematodes as well as many other different types of nematodes.[ citation needed ]
Root-knot nematodes are plant-parasitic nematodes from the genus Meloidogyne. They exist in soil in areas with hot climates or short winters. About 2000 plants worldwide are susceptible to infection by root-knot nematodes and they cause approximately 5% of global crop loss. Root-knot nematode larvae infect plant roots, causing the development of root-knot galls that drain the plant's photosynthate and nutrients. Infection of young plants may be lethal, while infection of mature plants causes decreased yield.
Rotylenchulus reniformis, the reniform nematode, is a species of parasitic nematode of plants with a worldwide distribution in the tropical and subtropical regions.
Meloidogyne arenaria is a species of plant pathogenic nematodes. This nematode is also known as the peanut root knot nematode. The word "Meloidogyne" is derived from two Greek words that mean "apple-shaped" and "female". The peanut root knot nematode, M. arenaria is one of the "major" Meloidogyne species because of its worldwide economic importance. M. arenaria is a predominant nematode species in the United States attacking peanut in Alabama, Florida, Georgia, and Texas. The most damaging nematode species for peanut in the USA is M. arenaria race 1 and losses can exceed 50% in severely infested fields. Among the several Meloidogyne species that have been characterized, M. arenaria is the most variable both morphologically and cytologically. In 1949, two races of this nematode had been identified, race 1 which reproduces on peanut and race 2 which cannot do so. However, in a recent study, three races were described. López-Pérez et al (2011) had also studied populations of M. arenaria race 2, which reproduces on tomato plants carrying the Mi gene and race 3, which reproduces on both resistant pepper and tomato.
Pratylenchus penetrans is a species of nematode in the genus Pratylenchus, the lesion nematodes. It occurs in temperate regions worldwide, regions between the subtropics and the polar circles. It is an animal that inhabits the roots of a wide variety of plants and results in necrotic lesions on the roots. Symptoms of P. penetrans make it hard to distinguish from other plant pathogens; only an assay of soil can conclusively diagnose a nematode problem in the field. P. penetrans is physically very similar to other nematode species, but is characterized by its highly distinctive mouthpiece. P. penetrans uses its highly modified mouth organs to rupture the outer surface of subterranean plant root structures. It will then enter into the root interior and feed on the plant tissue inside. P. penetrans is considered to be a crop parasite and farmers will often treat their soil with various pesticides in an attempt to eliminate the damage caused by an infestation. In doing this, farmers will also eliminate many of the beneficial soil fauna, which will lead to an overall degradation of soil quality in the future. Alternative, more environmentally sustainable methods to control P. penetrans populations may be possible in certain regions.
Pratylenchus zeae is a plant-pathogenic nematode found on potatoes, maize, cereal, tobacco, coffee, blackberry, and found most often on sugarcane.
Hirschmanniella oryzae, i.e. rice root nematode (RRN), is among the major pests of rice and is the most common plant-parasitic nematode found on irrigated rice. Recent modifications in cultivation practices have led to a substantial increase in rice production, which has been accompanied by heightened levels of RRN. The proportional increases in RRN with rice production can be explained by the nematode's impeccable adaptation towards constantly flooded conditions in which irrigated rice is often being grown.
Paratylenchus hamatus, the fig pin nematode, is a species of migratory plant endoparasites, that causes lesions on plant roots resulting in symptoms of chlorosis, wilting and ultimately yield losses. They move and feed on different parts of host tissue throughout their life cycle in order to find enough susceptible host tissue to survive and reproduce. A wide range of host plant species are susceptible to the fig pin nematode, including many valuable fruit and vegetable crops such as figs, carrots and celery. They are also commonly found associated with woody perennials in California. P. hamatus inhabits soils in both Europe and North America, and was originally isolated from fig in central California in 1950.
Mesocriconema xenoplax is a species of plant parasitic nematodes. Nematodes of this particular species are collectively called ring nematodes.
Heterodera sacchari, the sugarcane cyst nematode, mitotic parthenogenic sedentary endoparasitic nematode. This plant-parasitic nematode infects the roots of sugarcane, and the female nematode eventually becomes a thick-walled cyst filled with eggs. Aboveground symptoms are species specific and are similar to those caused by other Heterodera species. Symptoms include: stunted and chlorotic plants, and reduced root growth. Seedlings may be killed in heavily infested soils.
Hoplolaimus is a genus of nematodes known commonly as lance nematodes. They are parasites of plants, and three species are pests of agricultural crops.
Pratylenchus is a genus of nematodes known commonly as lesion nematodes. They are parasitic on plants and are responsible for root lesion disease on many taxa of host plants in temperate regions around the world. Lesion nematodes are migratory endoparasites that feed and reproduce in the root and move around, unlike the cyst or root-knot nematodes, which may stay in one place. They usually only feed on the cortex of the root. Species are distinguished primarily by the morphology of the stylets.
Globodera tabacum, commonly known as a tobacco cyst nematode, is a plant parasitic nematode that mainly infests the tobacco plant, but also plants in family Solanaceae.
Helicotylenchus is a genus of nematodes in the family Hoplolaimidae. They are known generally as spiral nematodes. They are found worldwide because they can live and survive in a wide range of habitats. They are among the most common parasitic nematodes of plants; found in corn, bananas, grass, soybeans.
Pratylenchus alleni is a migratory endoparasitic nematode, living inside of plant roots and feeding on parenchyma cells in the root cortex. P. alleni is an obligate biotroph, meaning it must have a living host in order to survive. Due to their incredibly broad host range, Pratylenchus species fall third in total economic impact, finishing just behind cyst nematodes and root knot nematodes (Meloidogyne). In Canada, it was isolated for the first time in 2011 in a soybean field.
Hoplolaimus galeatus is a plant pathogenic nematode.
The Enoplia are a subclass of nematodes in the class Enoplea.
Paratrichodorus is a genus of terrestrial root feeding (stubby-root) nematodes in the Trichodoridae family (trichorids), being one of five genera. They are economically important plant parasites and virus vectors. The females are didelphic, and are distributed worldwide.
Diphtherophorina is a suborder of terrestrial nematodes, being one of three that constitute suborder Triplonchida.
Trichodoridae is a family of terrestrial root feeding nematodes, being one of two that constitute suborder Triplonchida. They are economically important plant parasites and virus vectors.
Trichodorus is a genus of terrestrial root feeding (stubby-root) nematodes in the Trichodoridae family (trichorids), being one of five genera. They are economically important plant parasites and virus vectors.