Part of a series on |
Translation |
---|
Types |
Theory |
Technologies |
Localization |
Institutional |
Related topics |
|
Pre-editing is the process whereby a human prepares a document before applying machine translation. [1] The main goal of pre-editing is to reduce the post-editing workload by adapting the source document to improve the raw output of the machine translation. Pre-editing could be also valuable for human translation projects since it can increase the application of the translation memory.
In general, pre-editing is worth to apply when there are more than three target languages. In this case, pre-editing should facilitate the process of machine translation by spell and grammar checking, avoiding complex or ambiguous syntactic structure, and verifying term consistency. However, it is also applicable to poorly-converted files. [2] Linguistic pre-editing is more important than pre-editing of the format since errors can affect machine translation quality.
Computational linguistics is an interdisciplinary field concerned with the computational modelling of natural language, as well as the study of appropriate computational approaches to linguistic questions. In general, computational linguistics draws upon linguistics, computer science, artificial intelligence, mathematics, logic, philosophy, cognitive science, cognitive psychology, psycholinguistics, anthropology and neuroscience, among others.
Machine translation, sometimes referred to by the abbreviation MT, is a sub-field of computational linguistics that investigates the use of software to translate text or speech from one language to another.
Natural language processing (NLP) is an interdisciplinary subfield of linguistics, computer science, and artificial intelligence concerned with the interactions between computers and human language, in particular how to program computers to process and analyze large amounts of natural language data. The goal is a computer capable of "understanding" the contents of documents, including the contextual nuances of the language within them. The technology can then accurately extract information and insights contained in the documents as well as categorize and organize the documents themselves.
Optical character recognition or optical character reader (OCR) is the electronic or mechanical conversion of images of typed, handwritten or printed text into machine-encoded text, whether from a scanned document, a photo of a document, a scene photo or from subtitle text superimposed on an image.
A translation memory (TM) is a database that stores "segments", which can be sentences, paragraphs or sentence-like units that have previously been translated, in order to aid human translators. The translation memory stores the source text and its corresponding translation in language pairs called “translation units”. Individual words are handled by terminology bases and are not within the domain of TM.
Cross-language information retrieval (CLIR) is a subfield of information retrieval dealing with retrieving information written in a language different from the language of the user's query. The term "cross-language information retrieval" has many synonyms, of which the following are perhaps the most frequent: cross-lingual information retrieval, translingual information retrieval, multilingual information retrieval. The term "multilingual information retrieval" refers more generally both to technology for retrieval of multilingual collections and to technology which has been moved to handle material in one language to another. The term Multilingual Information Retrieval (MLIR) involves the study of systems that accept queries for information in various languages and return objects of various languages, translated into the user's language. Cross-language information retrieval refers more specifically to the use case where users formulate their information need in one language and the system retrieves relevant documents in another. To do so, most CLIR systems use various translation techniques. CLIR techniques can be classified into different categories based on different translation resources:
Natural language generation (NLG) is a software process that produces natural language output. A widely-cited survey of NLG methods describes NLG as "the subfield of artificial intelligence and computational linguistics that is concerned with the construction of computer systems than can produce understandable texts in English or other human languages from some underlying non-linguistic representation of information".
Question answering (QA) is a computer science discipline within the fields of information retrieval and natural language processing (NLP) that is concerned with building systems that automatically answer questions that are posed by humans in a natural language.
Automatic summarization is the process of shortening a set of data computationally, to create a subset that represents the most important or relevant information within the original content. Artificial intelligence algorithms are commonly developed and employed to achieve this, specialized for different types of data.
Computer-aided translation (CAT), also referred to as computer-assisted translation or computer-aided human translation (CAHT), is the use of software to assist a human translator in the translation process. The translation is created by a human, and certain aspects of the process are facilitated by software; this is in contrast with machine translation (MT), in which the translation is created by a computer, optionally with some human intervention.
Google Translate is a multilingual neural machine translation service developed by Google to translate text, documents and websites from one language into another. It offers a website interface, a mobile app for Android and iOS, and an API that helps developers build browser extensions and software applications. As of 2022, Google Translate supports 133 languages at various levels, and as of April 2016, claimed over 500 million total users, with more than 100 billion words translated daily, after the company stated in May 2013 that it served over 200 million people daily.
Statistical machine translation (SMT) is a machine translation paradigm where translations are generated on the basis of statistical models whose parameters are derived from the analysis of bilingual text corpora. The statistical approach contrasts with the rule-based approaches to machine translation as well as with example-based machine translation, and has more recently been superseded by neural machine translation in many applications.
Sentiment analysis is the use of natural language processing, text analysis, computational linguistics, and biometrics to systematically identify, extract, quantify, and study affective states and subjective information. Sentiment analysis is widely applied to voice of the customer materials such as reviews and survey responses, online and social media, and healthcare materials for applications that range from marketing to customer service to clinical medicine. With the rise of deep language models, such as RoBERTa, also more difficult data domains can be analyzed, e.g., news texts where authors typically express their opinion/sentiment less explicitly.
Subject indexing is the act of describing or classifying a document by index terms, keywords, or other symbols in order to indicate what different documents are about, to summarize their contents or to increase findability. In other words, it is about identifying and describing the subject of documents. Indexes are constructed, separately, on three distinct levels: terms in a document such as a book; objects in a collection such as a library; and documents within a field of knowledge.
A decompiler is a computer program that translates an executable file to high-level source code. It does therefore the opposite of a typical compiler, which translates a high-level language to a low-level language. While disassemblers translate an executable into assembly language, decompilers go a step further and translate the code into a higher level language such as C or Java, requiring more sophisticated techniques. Decompilers are usually unable to perfectly reconstruct the original source code, thus will frequently produce obfuscated code. Nonetheless, they remain an important tool in the reverse engineering of computer software.
Google Translator Toolkit was an online computer-assisted translation tool (CAT)—a web application designed to permit translators to edit the translations that Google Translate automatically generated using its own and/or user-uploaded files of appropriate glossaries and translation memory. The toolkit was designed to let translators organize their work and use shared translations, glossaries and translation memories, and was compatible with Microsoft Word, HTML, and other formats.
Post-editing is the process whereby humans amend machine-generated translation to achieve an acceptable final product. A person who post-edits is called a post-editor. The concept of post-editing is linked to that of pre-editing. In the process of translating a text via machine translation, best results may be gained by pre-editing the source text – for example by applying the principles of controlled language – and then post-editing the machine output. It is distinct from editing, which refers to the process of improving human generated text. Post-edited text may afterwards be revised to ensure the quality of the language choices are proofread to correct simple mistakes.
Interactive machine translation (IMT), is a specific sub-field of computer-aided translation. Under this translation paradigm, the computer software that assists the human translator attempts to predict the text the user is going to input by taking into account all the information it has available. Whenever such prediction is wrong and the user provides feedback to the system, a new prediction is performed considering the new information available. Such process is repeated until the translation provided matches the user's expectations.
MedSLT is a medium-ranged open source spoken language translator developed by the University of Geneva. It is funded by the Swiss National Science Foundation. The system has been designed for the medical domain. It currently covers the doctor-patient diagnosis dialogues for the domains of headache, chest and abdominal pain in English, French, Japanese, Spanish, Catalan and Arabic. The vocabulary used ranges from 350 to 1000 words depending on the domain and language pair.
MateCat is a web-based computer-assisted translation (CAT) tool. MateCat is released as open source software under the Lesser General Public License (LGPL) from the Free Software Foundation.