Proximal renal tubular acidosis

Last updated
Proximal renal tubular acidosis
Specialty Nephrology

Proximal renal tubular acidosis (pRTA) or type 2 renal tubular acidosis (RTA) is a type of RTA caused by a failure of the proximal tubular cells to reabsorb filtered bicarbonate from the urine, leading to urinary bicarbonate wasting and subsequent acidemia. The distal intercalated cells function normally, so the acidemia is less severe than dRTA and the urine can acidify to a pH of less than 5.3. [1] pRTA also has several causes, and may occasionally be present as a solitary defect, but is usually associated with a more generalised dysfunction of the proximal tubular cells called Fanconi syndrome where there is also phosphaturia, glycosuria, aminoaciduria, uricosuria and tubular proteinuria.

Contents

Patients with type 2 RTA are also typically hypokalemic due to a combination of secondary hyperaldosteronism, and potassium urinary losses - though serum potassium levels may be falsely elevated because of acidosis. Administration of bicarbonate prior to potassium supplementation might lead to worsened hypokalemia, as potassium shifts intracellularly with alkalinization.

The principal feature of Fanconi syndrome is bone demineralization (osteomalacia or rickets) due to phosphate and vitamin D wasting.

Signs and symptoms

Causes

Etiologies of proximal RTA may be divided into primary, isolated causes and secondary causes, or those related to another disease. [2] Primary causes are frequently single gene hereditary disorders. Secondary disorders can be divided into familial disorders, acquired disorders, and those related to other clinical entities.[ citation needed ]

Primary Disorders

Secondary Disorders

Familial disorders

Acquired disorders

Diagnosis

Diagnosis of proximal renal tubular acidosis is done by measuring the level of fractional excretion of bicarbonate in the urine. Since in proximal renal tubular acidosis patients the nephron is unable to reabsorb bicarbonate, the level of bicarbonate is going to be high in the urine.[ citation needed ]

Treatment

Treatment consists of oral bicarbonate supplementation. However, this will increase urinary bicarbonate wasting and may well promote a bicarbonate diuresis. The amount of bicarbonate given may have to be very large to stay ahead of the urinary losses. Correction with oral bicarbonate may exacerbate urinary potassium losses and precipitate hypokalemia. [13] As with dRTA, reversal of the chronic acidosis should reverse bone demineralization. [14]

Thiazide diuretics can also be used as a treatment by making use of contraction alkalosis caused by them.[ citation needed ]

See also

Related Research Articles

Acetazolamide Chemical compound

Acetazolamide, sold under the trade name Diamox among others, is a medication used to treat glaucoma, epilepsy, altitude sickness, periodic paralysis, idiopathic intracranial hypertension, urine alkalinazation, and heart failure. It may be used long term for the treatment of open angle glaucoma and short term for acute angle closure glaucoma until surgery can be carried out. It is taken by mouth or injection into a vein. Acetazolamide is a first generation Carbonic Anhydrase Inhibitor and it decreases the ocular fluid and osmolality in the eye to decrease intraocular pressure.

Respiratory acidosis Medical condition

Respiratory acidosis is a state in which decreased ventilation (hypoventilation) increases the concentration of carbon dioxide in the blood and decreases the blood's pH.

Cystinosis Lysosomal storage disease characterized by the abnormal accumulation of cystine in the lysosomes.

Cystinosis is a lysosomal storage disease characterized by the abnormal accumulation of cystine, the oxidized dimer of the amino acid cysteine. It is a genetic disorder that follows an autosomal recessive inheritance pattern. It is a rare autosomal recessive disorder resulting from accumulation of free cystine in lysosomes, eventually leading to intracellular crystal formation throughout the body. Cystinosis is the most common cause of Fanconi syndrome in the pediatric age group. Fanconi syndrome occurs when the function of cells in renal tubules is impaired, leading to abnormal amounts of carbohydrates and amino acids in the urine, excessive urination, and low blood levels of potassium and phosphates.

Hartnup disease Metabolic disorder

Hartnup disease is an autosomal recessive metabolic disorder affecting the absorption of nonpolar amino acids. Niacin is a precursor to nicotinamide, a necessary component of NAD+.

The anion gap is a value calculated from the results of multiple individual medical lab tests. It may be reported with the results of an electrolyte panel, which is often performed as part of a comprehensive metabolic panel.

Hypoaldosteronism Medical condition

Hypoaldosteronism is an endocrinological disorder characterized by decreased levels of the hormone aldosterone. Similarly, isolated hypoaldosteronism is the condition of having lowered aldosterone without corresponding changes in cortisol.

Hyperaldosteronism Hormonal disorder

Hyperaldosteronism is a medical condition wherein too much aldosterone is produced by the adrenal glands, which can lead to lowered levels of potassium in the blood (hypokalemia) and increased hydrogen ion excretion (alkalosis).

Hyperchloremic acidosis is a form of metabolic acidosis associated with a normal anion gap, a decrease in plasma bicarbonate concentration, and an increase in plasma chloride concentration. Although plasma anion gap is normal, this condition is often associated with an increased urine anion gap, due to the kidney's inability to secrete ammonia.

Renal tubular acidosis Medical condition

Renal tubular acidosis (RTA) is a medical condition that involves an accumulation of acid in the body due to a failure of the kidneys to appropriately acidify the urine. In renal physiology, when blood is filtered by the kidney, the filtrate passes through the tubules of the nephron, allowing for exchange of salts, acid equivalents, and other solutes before it drains into the bladder as urine. The metabolic acidosis that results from RTA may be caused either by insufficient secretion of hydrogen ions into the latter portions of the nephron or by failure to reabsorb sufficient bicarbonate ions from the filtrate in the early portion of the nephron. Although a metabolic acidosis also occurs in those with chronic kidney disease, the term RTA is reserved for individuals with poor urinary acidification in otherwise well-functioning kidneys. Several different types of RTA exist, which all have different syndromes and different causes. RTA is usually an incidental finding based on routine blood draws that show abnormal results. Clinically, patients may present with vague symptoms such as dehydration, mental status changes, or delayed growth in adolescents.

Interstitial nephritis Medical condition

Interstitial nephritis, also known as tubulointerstitial nephritis, is inflammation of the area of the kidney known as the renal interstitium, which consists of a collection of cells, extracellular matrix, and fluid surrounding the renal tubules. In addition to providing a scaffolding support for the tubular architecture, the interstitium has been shown to participate in the fluid and electrolyte exchange as well as endocrine functions of the kidney.

Bartter syndrome Medical condition

Bartter syndrome (BS) is a rare inherited disease characterised by a defect in the thick ascending limb of the loop of Henle, which results in low potassium levels (hypokalemia), increased blood pH (alkalosis), and normal to low blood pressure. There are two types of Bartter syndrome: neonatal and classic. A closely associated disorder, Gitelman syndrome, is milder than both subtypes of Bartter syndrome.

Oculocerebrorenal syndrome Medical condition

Oculocerebrorenal syndrome is a rare X-linked recessive disorder characterized by congenital cataracts, hypotonia, intellectual disability, proximal tubular acidosis, aminoaciduria and low-molecular-weight proteinuria. Lowe syndrome can be considered a cause of Fanconi syndrome.

Dents disease Medical condition

Dent's disease is a rare X-linked recessive inherited condition that affects the proximal renal tubules of the kidney. It is one cause of Fanconi syndrome, and is characterized by tubular proteinuria, excess calcium in the urine, formation of calcium kidney stones, nephrocalcinosis, and chronic kidney failure.

Nephrocalcinosis, once known as Albright's calcinosis after Fuller Albright, is a term originally used to describe deposition of calcium salts in the renal parenchyma due to hyperparathyroidism. The term nephrocalcinosis is used to describe the deposition of both calcium oxalate and calcium phosphate. It may cause acute kidney injury. It is now more commonly used to describe diffuse, fine, renal parenchymal calcification in radiology. It is caused by multiple different conditions and is determined progressive kidney dysfunction. These outlines eventually come together to form a dense mass. During its early stages, nephrocalcinosis is visible on x-ray, and appears as a fine granular mottling over the renal outlines. It is most commonly seen as an incidental finding with medullary sponge kidney on an abdominal x-ray. However, it may be severe enough to cause renal tubular acidosis or even end stage kidney disease, due to disruption of the kidney tissue by the deposited calcium.

Medullary sponge kidney Congenital disorder of urinary system

Medullary sponge kidney is a congenital disorder of the kidneys characterized by cystic dilatation of the collecting tubules in one or both kidneys. Individuals with medullary sponge kidney are at increased risk for kidney stones and urinary tract infection (UTI). Patients with MSK typically pass twice as many stones per year as do other stone formers without MSK. While having a low morbidity rate, as many as 10% of patients with MSK have an increased risk of morbidity associated with frequent stones and UTIs. While many patients report increased chronic kidney pain, the source of the pain, when a UTI or blockage is not present, is unclear at this time. Renal colic is present in 55% of patients. Women with MSK experience more stones, UTIs, and complications than men. MSK was previously believed not to be hereditary but there is more evidence coming forth that may indicate otherwise.

Lightwood–Albright syndrome is a neonatal form of renal tubular acidosis. It is characterized by distal renal tubular acidosis that occurs as a result of bicarbonate wasting and the inability to excrete hydrogen ions. By definition, it is a transient process and has no particular disease course. If untreated, it may lead to nephrocalcinosis and failure to thrive.

The urine anion gap is calculated using measured ions found in the urine. It is used to aid in the differential diagnosis of metabolic acidosis.

Fanconi syndrome or Fanconi's syndrome is a syndrome of inadequate reabsorption in the proximal renal tubules of the kidney. The syndrome can be caused by various underlying congenital or acquired diseases, by toxicity, or by adverse drug reactions. It results in various small molecules of metabolism being passed into the urine instead of being reabsorbed from the tubular fluid. Fanconi syndrome affects the proximal tubules, namely, the proximal convoluted tubule (PCT), which is the first part of the tubule to process fluid after it is filtered through the glomerulus, and the proximal straight tubule, which leads to the descending limb of loop of Henle.

Distal renal tubular acidosis Medical condition

Distal renal tubular acidosis (dRTA) is the classical form of RTA, being the first described. Distal RTA is characterized by a failure of acid secretion by the alpha intercalated cells of the distal tubule and cortical collecting duct of the distal nephron. This failure of acid secretion may be due to a number of causes. It leads to relatively alkaline urine, due to the kidney's inability to acidify the urine to a pH of less than 5.3.

Oliver Wrong

Professor Oliver Murray Wrong was an eminent academic nephrologist and one of the founders of the speciality in the United Kingdom. From a background as a "salt and water" physician, he made detailed clinical observations and scientifically imaginative connections which were the basis of numerous advances in the molecular biology of the human kidney. Wrong himself contributed to much of the molecular work after his own "retirement". He dictated amendments to his final paper during his final illness in his own teaching hospital, University College Hospital (UCH), London. Though academic in his leanings, he was a compassionate physician who established a warm rapport with patients, a link he regarded as the keystone of his research. He belonged to a generation of idealistic young doctors responsible for the establishment of the UK's National Health Service in the post-War years.

References

  1. Rodriguez Soriano J, Boichis H, Stark H, Edelmann CM (1967). "Proximal renal tubular acidosis. A defect in bicarbonate reabsorption with normal urinary acidification". Pediatr. Res. 1 (2): 81–98. doi: 10.1203/00006450-196703000-00001 . PMID   6029811.
  2. Soriano, Juan Rodríguez (2002-08-01). "Renal Tubular Acidosis: The Clinical Entity". Journal of the American Society of Nephrology. 13 (8): 2160–2170. doi: 10.1097/01.ASN.0000023430.92674.E5 . ISSN   1046-6673. PMID   12138150.
  3. Gahl WA, Thoene JG, Schneider JA (2002). "Cystinosis". N. Engl. J. Med. 347 (2): 111–21. doi:10.1056/NEJMra020552. PMID   12110740.
  4. Golberg L, Holzel A, Komrower GM, Schwarz V (1956). "A clinical and biochemical study of galactosaemia; a possible explanation of the nature of the biochemical lesion". Arch. Dis. Child. 31 (158): 254–64. doi:10.1136/adc.31.158.254. PMC   2011923 . PMID   13363463.
  5. Matsuo N, Tsuchiya Y, Cho H, Nagai T, Tsuji A (1986). "Proximal renal tubular acidosis in a child with type 1 glycogen storage disease". Acta Paediatr Scand. 75 (2): 332–5. doi:10.1111/j.1651-2227.1986.tb10210.x. PMID   3457521.
  6. Morris RC (1968). "An experimental renal acidification defect in patients with hereditary fructose intolerance. I. Its resemblance to renal tubular acidosis". J. Clin. Invest. 47 (6): 1389–98. doi:10.1172/JCI105830. PMC   297294 . PMID   5653216.
  7. Hodgson SV, Heckmatt JZ, Hughes E, Crolla JA, Dubowitz V, Bobrow M (1986). "A balanced de novo X/autosome translocation in a girl with manifestations of Lowe syndrome". Am. J. Med. Genet. 23 (3): 837–47. doi:10.1002/ajmg.1320230311. PMID   3953680.
  8. Weibers, DO; Wilson, DM; McLeod, RA; Goldstein, NP (August 1979). "Renal stones in Wilson's disease". Am J Med. 67 (2): 249–54. doi:10.1016/0002-9343(79)90399-1. PMID   463930. Archived from the original on 2012-09-04.
  9. Rochman, J; Lichtig, C; Osterweill, D; Tatarsky, I; Eidelman, S (October 1980). "Adult Fanconi's syndrome with renal tubular acidosis in association with renal amyloidosis: occurrence in a patient with chronic lymphocytic leukemia". Arch Intern Med. 140 (10): 1361–3. doi:10.1001/archinte.140.10.1361. PMID   6775610.
  10. Messiaen T, Deret S, Mougenot B, et al. (2000). "Adult Fanconi syndrome secondary to light chain gammopathy. Clinicopathologic heterogeneity and unusual features in 11 patients". Medicine (Baltimore). 79 (3): 135–54. doi:10.1097/00005792-200005000-00002. PMID   10844934.
  11. Riley AL, Ryan LM, Roth DA (1977). "Renal proximal tubular dysfunction and paroxysmal nocturnal hemoglobinuria". Am. J. Med. 62 (1): 125–9. doi:10.1016/0002-9343(77)90357-6. PMID   13653.
  12. Skinner R (2003). "Chronic ifosfamide nephrotoxicity in children". Med. Pediatr. Oncol. 41 (3): 190–7. doi:10.1002/mpo.10336. PMID   12868118.
  13. Rodríguez Soriano J (2002). "Renal tubular acidosis: the clinical entity". J. Am. Soc. Nephrol. 13 (8): 2160–70. doi: 10.1097/01.ASN.0000023430.92674.E5 . PMID   12138150.
  14. McSherry E (1981). "Renal tubular acidosis in childhood". Kidney Int. 20 (6): 799–809. doi: 10.1038/ki.1981.213 . PMID   7038264.