Proximal renal tubular acidosis

Last updated
Proximal renal tubular acidosis
Specialty Nephrology

Proximal renal tubular acidosis (pRTA) or type 2 renal tubular acidosis (RTA) is a type of RTA caused by a failure of the proximal tubular cells to reabsorb filtered bicarbonate from the urine, leading to urinary bicarbonate wasting and subsequent acidemia. The distal intercalated cells function normally, so the acidemia is less severe than dRTA and the urine can acidify to a pH of less than 5.3. [1] pRTA also has several causes, and may occasionally be present as a solitary defect, but is usually associated with a more generalised dysfunction of the proximal tubular cells called Fanconi syndrome where there is also phosphaturia, glycosuria, aminoaciduria, uricosuria and tubular proteinuria.

Contents

Patients with type 2 RTA are also typically hypokalemic due to a combination of secondary hyperaldosteronism, and potassium urinary losses - though serum potassium levels may be falsely elevated because of acidosis. Administration of bicarbonate prior to potassium supplementation might lead to worsened hypokalemia, as potassium shifts intracellularly with alkalinization.

The principal feature of Fanconi syndrome is bone demineralization (osteomalacia or rickets) due to phosphate and vitamin D wasting.

Signs and symptoms

Causes

Etiologies of proximal RTA may be divided into primary, isolated causes and secondary causes, or those related to another disease. [2] Primary causes are frequently single gene hereditary disorders. Secondary disorders can be divided into familial disorders, acquired disorders, and those related to other clinical entities.[ citation needed ]

Primary Disorders

Secondary Disorders

Familial disorders

Acquired disorders

Diagnosis

Diagnosis of proximal renal tubular acidosis is done by measuring the level of fractional excretion of bicarbonate in the urine. Since in proximal renal tubular acidosis patients the nephron is unable to reabsorb bicarbonate, the level of bicarbonate is going to be high in the urine.[ citation needed ]

Treatment

Treatment consists of oral bicarbonate supplementation. However, this will increase urinary bicarbonate wasting and may well promote a bicarbonate diuresis. The amount of bicarbonate given may have to be very large to stay ahead of the urinary losses. Correction with oral bicarbonate may exacerbate urinary potassium losses and precipitate hypokalemia. [13] As with dRTA, reversal of the chronic acidosis should reverse bone demineralization. [14]

Thiazide diuretics can also be used as a treatment by making use of contraction alkalosis caused by them.[ citation needed ]

See also

References

  1. Rodriguez Soriano J, Boichis H, Stark H, Edelmann CM (1967). "Proximal renal tubular acidosis. A defect in bicarbonate reabsorption with normal urinary acidification". Pediatr. Res. 1 (2): 81–98. doi: 10.1203/00006450-196703000-00001 . PMID   6029811.
  2. Soriano, Juan Rodríguez (2002-08-01). "Renal Tubular Acidosis: The Clinical Entity". Journal of the American Society of Nephrology. 13 (8): 2160–2170. doi: 10.1097/01.ASN.0000023430.92674.E5 . ISSN   1046-6673. PMID   12138150.
  3. Gahl WA, Thoene JG, Schneider JA (2002). "Cystinosis". N. Engl. J. Med. 347 (2): 111–21. doi:10.1056/NEJMra020552. PMID   12110740.
  4. Golberg L, Holzel A, Komrower GM, Schwarz V (1956). "A clinical and biochemical study of galactosaemia; a possible explanation of the nature of the biochemical lesion". Arch. Dis. Child. 31 (158): 254–64. doi:10.1136/adc.31.158.254. PMC   2011923 . PMID   13363463.
  5. Matsuo N, Tsuchiya Y, Cho H, Nagai T, Tsuji A (1986). "Proximal renal tubular acidosis in a child with type 1 glycogen storage disease". Acta Paediatr Scand. 75 (2): 332–5. doi:10.1111/j.1651-2227.1986.tb10210.x. PMID   3457521. S2CID   27968419.
  6. Morris RC (1968). "An experimental renal acidification defect in patients with hereditary fructose intolerance. I. Its resemblance to renal tubular acidosis". J. Clin. Invest. 47 (6): 1389–98. doi:10.1172/JCI105830. PMC   297294 . PMID   5653216.
  7. Hodgson SV, Heckmatt JZ, Hughes E, Crolla JA, Dubowitz V, Bobrow M (1986). "A balanced de novo X/autosome translocation in a girl with manifestations of Lowe syndrome". Am. J. Med. Genet. 23 (3): 837–47. doi:10.1002/ajmg.1320230311. PMID   3953680.
  8. Weibers, DO; Wilson, DM; McLeod, RA; Goldstein, NP (August 1979). "Renal stones in Wilson's disease". Am J Med. 67 (2): 249–54. doi:10.1016/0002-9343(79)90399-1. PMID   463930. Archived from the original on 2012-09-04.
  9. Rochman, J; Lichtig, C; Osterweill, D; Tatarsky, I; Eidelman, S (October 1980). "Adult Fanconi's syndrome with renal tubular acidosis in association with renal amyloidosis: occurrence in a patient with chronic lymphocytic leukemia" . Arch Intern Med. 140 (10): 1361–3. doi:10.1001/archinte.140.10.1361. PMID   6775610.
  10. Messiaen T, Deret S, Mougenot B, et al. (2000). "Adult Fanconi syndrome secondary to light chain gammopathy. Clinicopathologic heterogeneity and unusual features in 11 patients". Medicine (Baltimore). 79 (3): 135–54. doi:10.1097/00005792-200005000-00002. PMID   10844934. S2CID   32481302.
  11. Riley AL, Ryan LM, Roth DA (1977). "Renal proximal tubular dysfunction and paroxysmal nocturnal hemoglobinuria". Am. J. Med. 62 (1): 125–9. doi:10.1016/0002-9343(77)90357-6. PMID   13653.
  12. Skinner R (2003). "Chronic ifosfamide nephrotoxicity in children". Med. Pediatr. Oncol. 41 (3): 190–7. doi:10.1002/mpo.10336. PMID   12868118.
  13. Rodríguez Soriano J (2002). "Renal tubular acidosis: the clinical entity". J. Am. Soc. Nephrol. 13 (8): 2160–70. doi: 10.1097/01.ASN.0000023430.92674.E5 . PMID   12138150.
  14. McSherry E (1981). "Renal tubular acidosis in childhood". Kidney Int. 20 (6): 799–809. doi: 10.1038/ki.1981.213 . PMID   7038264.