Pyrimidine-5'-nucleotide nucleosidase

Last updated
pyrimidine-5'-nucleotide nucleosidase
Identifiers
EC no. 3.2.2.10
CAS no. 9023-31-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a pyrimidine-5'-nucleotide nucleosidase (EC 3.2.2.10) is an enzyme that catalyzes the chemical reaction

a pyrimidine 5'-nucleotide + H2O D-ribose 5-phosphate + a pyrimidine base

Thus, the two substrates of this enzyme are pyrimidine 5'-nucleotide and H2O, whereas its two products are D-ribose 5-phosphate and pyrimidine base.

This enzyme belongs to the family of hydrolases, specifically those glycosylases that hydrolyse N-glycosyl compounds. The systematic name of this enzyme class is pyrimidine-5'-nucleotide phosphoribo(deoxyribo)hydrolase. Other names in common use include pyrimidine nucleotide N-ribosidase, and Pyr5N. This enzyme participates in pyrimidine metabolism.

Related Research Articles

<span class="mw-page-title-main">Nucleotide</span> Biological molecules that form the building blocks of nucleic acids

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

<span class="mw-page-title-main">Cyclic nucleotide</span> Cyclic nucleic acid

A cyclic nucleotide (cNMP) is a single-phosphate nucleotide with a cyclic bond arrangement between the sugar and phosphate groups. Like other nucleotides, cyclic nucleotides are composed of three functional groups: a sugar, a nitrogenous base, and a single phosphate group. As can be seen in the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) images, the 'cyclic' portion consists of two bonds between the phosphate group and the 3' and 5' hydroxyl groups of the sugar, very often a ribose.

<span class="mw-page-title-main">Ribonucleotide</span> Nucleotide containing ribose as its pentose component

In biochemistry, a ribonucleotide is a nucleotide containing ribose as its pentose component. It is considered a molecular precursor of nucleic acids. Nucleotides are the basic building blocks of DNA and RNA. Ribonucleotides themselves are basic monomeric building blocks for RNA. Deoxyribonucleotides, formed by reducing ribonucleotides with the enzyme ribonucleotide reductase (RNR), are essential building blocks for DNA. There are several differences between DNA deoxyribonucleotides and RNA ribonucleotides. Successive nucleotides are linked together via phosphodiester bonds.

<span class="mw-page-title-main">Purine nucleoside phosphorylase</span> Enzyme

Purine nucleoside phosphorylase, PNP, PNPase or inosine phosphorylase is an enzyme that in humans is encoded by the NP gene. It catalyzes the chemical reaction

<span class="mw-page-title-main">Nucleic acid metabolism</span> Process

Nucleic acid metabolism is a collective term that refers to the variety of chemical reactions by which nucleic acids are either synthesized or degraded. Nucleic acids are polymers made up of a variety of monomers called nucleotides. Nucleotide synthesis is an anabolic mechanism generally involving the chemical reaction of phosphate, pentose sugar, and a nitrogenous base. Degradation of nucleic acids is a catabolic reaction and the resulting parts of the nucleotides or nucleobases can be salvaged to recreate new nucleotides. Both synthesis and degradation reactions require multiple enzymes to facilitate the event. Defects or deficiencies in these enzymes can lead to a variety of diseases.

Pyrimidine biosynthesis occurs both in the body and through organic synthesis.

Purine metabolism refers to the metabolic pathways to synthesize and break down purines that are present in many organisms.

In enzymology, an allyl-alcohol dehydrogenase (EC 1.1.1.54) is an enzyme that catalyzes the chemical reaction

In enzymology, a tryptophan 2-monooxygenase (EC 1.13.12.3) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">ADP-ribose diphosphatase</span>

ADP-ribose diphosphatase (EC 3.6.1.13) is an enzyme that catalyzes a hydrolysis reaction in which water nucleophilically attacks ADP-ribose to produce AMP and D-ribose 5-phosphate. Enzyme hydrolysis occurs by the breakage of a phosphoanhydride bond and is dependent on Mg2+ ions that are held in complex by the enzyme.

<span class="mw-page-title-main">Nucleoside-diphosphatase</span> Group of proteins having nucleoside-diphosphatase activity

In enzymology, a nucleoside-diphosphatase (EC 3.6.1.6) is an enzyme that catalyzes the chemical reaction

The enzyme feruloyl esterase (EC 3.1.1.73) catalyzes the reaction

In enzymology, a NMN nucleosidase (EC 3.2.2.14) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Purine nucleosidase</span>

In enzymology, a purine nucleosidase (EC 3.2.2.1) is an enzyme that catalyzes the chemical reaction

In enzymology, a ribosylpyrimidine nucleosidase (EC 3.2.2.8) is an enzyme that catalyzes the chemical reaction

In enzymology, an adenosine-phosphate deaminase (EC 3.5.4.17) is an enzyme that catalyzes the chemical reaction

2-Formylbenzoate dehydrogenase (EC 1.2.1.78, 2-carboxybenzaldehyde dehydrogenase, 2CBAL dehydrogenase, PhdK) is an enzyme with systematic name 2-formylbenzoate:NAD+ oxidoreductase. This enzyme catalyses the following chemical reaction

Mn2+-dependent ADP-ribose/CDP-alcohol diphosphatase (EC 3.6.1.53, Mn2+-dependent ADP-ribose/CDP-alcohol pyrophosphatase, ADPRibase-Mn) is an enzyme with systematic name CDP-choline phosphohydrolase. This enzyme catalyses the following chemical reaction

Aminopyrimidine aminohydrolase (EC 3.5.99.2, thiaminase, thiaminase II, tenA (gene)) is an enzyme with systematic name 4-amino-5-aminomethyl-2-methylpyrimidine aminohydrolase. This enzyme catalyses the following chemical reaction

Arthrobacter luteus (ALU) is a species of gram-positive bacteria in the genus Arthrobacter. A. luteus is facultatively anaerobic, pleomorphic, branching, non-motile, non-sporulating, non-acid-fast, catalase-positive, and rod-shaped.

References