Galactosidases

Last updated

Galactosidases are enzymes (glycoside hydrolases) that catalyze the hydrolysis of galactosides into monosaccharides.

Contents

Galactosides can be classified as either alpha or beta. If the galactoside is classified as an alpha-galactoside, the enzyme is called alpha-galactosidase, and is responsible for catalyzing the hydrolysis of substrates that contain α-galactosidic residues, such as glycosphingolipids or glycoproteins. [1] On the other hand, if it is a beta-galactoside, it is called beta-galactosidase, and is responsible for breaking down the disaccharide lactose into its monosaccharide components, glucose and galactose [2] Both varieties of galactosidase are categorized under the EC number 3.2.1.

Two recombinant forms of alpha-galactosidase are called agalsidase alfa (INN) and agalsidase beta (INN). Lack of alpha-galactosidase activity in leukocytes has been linked to Fabry Disease. [3]

Galactosidases have a variety of uses, including the production of prebiotics, the biosynthesis of transgalactosylated products, and the removal of lactose.

B-galactosidase forms the basis of lac z operon in bacteria which can be used to control gene expression.

Uses

B-galactosidase can be used to track the efficiency of bacterial transformation with a recombinant plasmid in a process called Blue/White Color Screening. B-galactosidase is made up of 4 identical polypeptide chains, i.e. it has 4 identical subunits. When B-galactosidase is separated into 2 fragments, it has the unique property of regaining enzymatic activity upon the rejoining of the inactive fragments. [4] In the process called alpha-complementation, one of the fragments (omega) is encoded by a part of a gene of the lac operon that is found in the chromosome of the bacteria, while the other fragment (alpha) is encoded by the other part of the gene that is found in the plasmid. It is only when both parts of the gene are being expressed that both the omega and alpha fragments are produced. When both fragments are present they would come together to restore the activity of B-galactosidase. However, by placing the target gene within the locus responsible for encoding the alpha fragment, one can track the presence of the desired gene in the plasmid. When the target gene is present, the alpha-fragment gene would be inactive and the alpha fragment won't be produced. In that case B-galactosidase will not be active. When the target gene is not found in the vector, the alpha fragment gene would be active, producing the alpha fragment and allowing for B-galactosidase to gain its activity. To trace the activity of B-galactosidase a colorless analog of lactose is used, X-gal. The hydrolysis of X-gal by B-galactosidase produces galactose, a blue colored compound. Therefore, when the bacteria is transformed with the recombinant plasmid B-galactosidase is inactive and the colonies appear white, but when bacteria are transformed with the original plasmid, lacking the target gene, B-galactosidase is active and the colonies appear blue. [5]

Related Research Articles

<span class="mw-page-title-main">Lactase</span> Mammalian protein found in Homo sapiens

Lactase is an enzyme produced by many organisms. It is located in the brush border of the small intestine of humans and other mammals. Lactase is essential to the complete digestion of whole milk; it breaks down lactose, a sugar which gives milk its sweetness. People who have deficiency of lactase, and consume dairy products, may experience the symptoms of lactose intolerance. Lactase can be purchased as a food supplement, and is added to milk to produce "lactose-free" milk products.

<span class="mw-page-title-main">Galactose</span> Monosaccharide sugar

Galactose, sometimes abbreviated Gal, is a monosaccharide sugar that is about as sweet as glucose, and about 65% as sweet as sucrose. It is an aldohexose and a C-4 epimer of glucose. A galactose molecule linked with a glucose molecule forms a lactose molecule.

<span class="mw-page-title-main">Beta-galactosidase</span> Family of glycoside hydrolase enzymes

β-Galactosidase, is a glycoside hydrolase enzyme that catalyzes hydrolysis of terminal non-reducing β-D-galactose residues in β-D-galactosides.

<span class="mw-page-title-main">François Jacob</span> French biologist

François Jacob was a French biologist who, together with Jacques Monod, originated the idea that control of enzyme levels in all cells occurs through regulation of transcription. He shared the 1965 Nobel Prize in Medicine with Jacques Monod and André Lwoff.

<i>lac</i> operon Set genes encoding proteins and enzymes for lactose metabolism

The lactose operon is an operon required for the transport and metabolism of lactose in E. coli and many other enteric bacteria. Although glucose is the preferred carbon source for most bacteria, the lac operon allows for the effective digestion of lactose when glucose is not available through the activity of beta-galactosidase. Gene regulation of the lac operon was the first genetic regulatory mechanism to be understood clearly, so it has become a foremost example of prokaryotic gene regulation. It is often discussed in introductory molecular and cellular biology classes for this reason. This lactose metabolism system was used by François Jacob and Jacques Monod to determine how a biological cell knows which enzyme to synthesize. Their work on the lac operon won them the Nobel Prize in Physiology in 1965.

<span class="mw-page-title-main">Fabry disease</span> Rare human genetic lysosomal storage disorder

Fabry disease, also known as Anderson–Fabry disease, is a rare genetic disease that can affect many parts of the body, including the kidneys, heart, and skin. Fabry disease is one of a group of conditions known as lysosomal storage diseases. The genetic mutation that causes Fabry disease interferes with the function of an enzyme that processes biomolecules known as sphingolipids, leading to these substances building up in the walls of blood vessels and other organs. It is inherited in an X-linked manner.

Isopropyl β-<small>D</small>-1-thiogalactopyranoside Chemical compound

Isopropyl β-d-1-thiogalactopyranoside (IPTG) is a molecular biology reagent. This compound is a molecular mimic of allolactose, a lactose metabolite that triggers transcription of the lac operon, and it is therefore used to induce protein expression where the gene is under the control of the lac operator.

In biology, a marker gene may have several meanings. In nuclear biology and molecular biology, a marker gene is a gene used to determine if a nucleic acid sequence has been successfully inserted into an organism's DNA. In particular, there are two sub-types of these marker genes: a selectable marker and a marker for screening. In metagenomics and phylogenetics, a marker gene is an orthologous gene group which can be used to delineate between taxonomic lineages.

<span class="mw-page-title-main">Alpha-galactosidase</span> Enzyme

α-Galactosidase is a glycoside hydrolase enzyme that catalyses the following reaction:

<span class="mw-page-title-main">X-gal</span> Chemical compound

X-gal is an organic compound consisting of galactose linked to a substituted indole. The compound was synthesized by Jerome Horwitz and collaborators in 1964. The formal chemical name is often shortened to less accurate but also less cumbersome phrases such as bromochloroindoxyl galactoside. The X from indoxyl may be the source of the X in the X-gal contraction. X-gal is often used in molecular biology to test for the presence of an enzyme, β-galactosidase, in the place of its usual target, a β-galactoside. It is also used to detect activity of this enzyme in histochemistry and bacteriology. X-gal is one of many indoxyl glycosides and esters that yield insoluble blue compounds similar to indigo dye as a result of enzyme-catalyzed hydrolysis.

<span class="mw-page-title-main">Blue–white screen</span> DNA screening technique

The blue–white screen is a screening technique that allows for the rapid and convenient detection of recombinant bacteria in vector-based molecular cloning experiments. This method of screening is usually performed using a suitable bacterial strain, but other organisms such as yeast may also be used. DNA of transformation is ligated into a vector. The vector is then inserted into a competent host cell viable for transformation, which are then grown in the presence of X-gal. Cells transformed with vectors containing recombinant DNA will produce white colonies; cells transformed with non-recombinant plasmids grow into blue colonies.

In molecular cloning, a vector is any particle used as a vehicle to artificially carry a foreign nucleic sequence – usually DNA – into another cell, where it can be replicated and/or expressed. A vector containing foreign DNA is termed recombinant DNA. The four major types of vectors are plasmids, viral vectors, cosmids, and artificial chromosomes. Of these, the most commonly used vectors are plasmids. Common to all engineered vectors have an origin of replication, a multicloning site, and a selectable marker.

pUC19

pUC19 is one of a series of plasmid cloning vectors created by Joachim Messing and co-workers. The designation "pUC" is derived from the classical "p" prefix and the abbreviation for the University of California, where early work on the plasmid series had been conducted. It is a circular double stranded DNA and has 2686 base pairs. pUC19 is one of the most widely used vector molecules as the recombinants, or the cells into which foreign DNA has been introduced, can be easily distinguished from the non-recombinants based on color differences of colonies on growth media. pUC18 is similar to pUC19, but the MCS region is reversed.

<span class="mw-page-title-main">Lactose permease</span>

Lactose permease is a membrane protein which is a member of the major facilitator superfamily. Lactose permease can be classified as a symporter, which uses the proton gradient towards the cell to transport β-galactosides such as lactose in the same direction into the cell.

<span class="mw-page-title-main">Molecular cloning</span> Set of methods in molecular biology

Molecular cloning is a set of experimental methods in molecular biology that are used to assemble recombinant DNA molecules and to direct their replication within host organisms. The use of the word cloning refers to the fact that the method involves the replication of one molecule to produce a population of cells with identical DNA molecules. Molecular cloning generally uses DNA sequences from two different organisms: the species that is the source of the DNA to be cloned, and the species that will serve as the living host for replication of the recombinant DNA. Molecular cloning methods are central to many contemporary areas of modern biology and medicine.

<span class="mw-page-title-main">Glycoside hydrolase family 27</span>

In molecular biology, glycoside hydrolase family 27 is a family of glycoside hydrolases.

<span class="mw-page-title-main">Glycoside hydrolase family 36</span>

In molecular biology, glycoside hydrolase family 36 is a family of glycoside hydrolases.

For pharmacology and genetics, the Umu Chromotest, first developed and published by Oda et al., is a biological assay (bioassay) to assess the genotoxic potential of chemical compounds. It is based on the ability of DNA-damaging agents to induce the expression of the umu operon. In connection with the damage inducible (din) genes recA, lexA and umuD, the umuC gene is essentially involved in bacterial mutagenesis through the SOS response.

<span class="mw-page-title-main">CcdA/CcdB Type II Toxin-antitoxin system</span>

The CcdA/CcdB Type II Toxin-antitoxin system is one example of the bacterial toxin-antitoxin (TA) systems that encode two proteins, one a potent inhibitor of cell proliferation (toxin) and the other its specific antidote (antitoxin). These systems preferentially guarantee growth of plasmid-carrying daughter cells in a bacterial population by killing newborn bacteria that have not inherited a plasmid copy at cell division.

<span class="mw-page-title-main">Boris Rotman</span> Chilean American immunologist–molecular biologist (1924–2021)

Marcos Boris Rotman was a Chilean American immunologist–molecular biologist and professor emeritus of Medical Science at Alpert Medical School of Brown University. He is widely recognized for performing the first single molecule experiments in biology. He died in July 2021 at the age of 96.

References

  1. King, Robert C.; Mulligan, Pamela K.; Stansfield, William D. A Dictionary of Genetics (8 ed.).
  2. King, Robert C.; Mulligan, Pamela K.; Stansfield, William D. A Dictionary of Genetics (8th ed.). Oxford University Press. ISBN   9780199376865.
  3. Kint, J. A. (1970-02-27). "Fabry's Disease: Alpha-Galactosidase Deficiency". Science. 167 (3922): 1268–1269. Bibcode:1970Sci...167.1268K. doi:10.1126/science.167.3922.1268. ISSN   0036-8075. PMID   5411915.
  4. Broome, Ann-Marie; Bhavsar, Nihir; Ramamurthy, Gopal; Newton, Gail; Basilion, James (Spring 2017). "Expanding the utility of β-galactosidase complementation: piece by piece". Molecular Pharmaceutics. 7 (1): 60–74. doi:10.1021/mp900188e. PMC   2835542 . PMID   19899815.
  5. Clark, David; Pazdernik, Nanette (2013). Molecular Biology. Oxford, UK: Elsevier. p. 201. ISBN   9780123785947.