Qianodus

Last updated

Contents

Qianodus
Temporal range: Aeronian
O
S
D
C
P
T
J
K
Pg
N
Qianodus holotype.jpg
Tooth whorl of Qianodus duplicis. Volume rendering of the holotype specimen shown in lateral view with colour coded primary (yellow and blue) and accessory (red) teeth.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Chondrichthyes
Genus: Qianodus
Andreev et al. 2022
Species:
Q. duplicis
Binomial name
Qianodus duplicis
Andreev et al. 2022

Qianodus (from the Chinese: 黔, 'Qian', the ancient name for Guizhou and the Greek: ὀδούς, odus, 'tooth') is a jawed vertebrate genus that is based on disarticulated teeth from the lower Silurian (Aeronian, c. 439 Myr) of China. [1] The type and only species of Qianodus, Q. duplicis [1] , is known from compound dental elements called tooth whorls, [2] [3] [4] each consisting of multiple tooth generations carried by a spiral-shaped base. The tooth whorls of Qianodus represent the oldest unequivocal remains of a toothed vertebrate, predating previously recorded occurrences [5] by about 14 million years. The specimens attributed to the genus come from limestone conglomerate beds of the Rongxi Formation exposed near the village of Leijiatun, Guizhou Province, China. These horizons have been interpreted as tidal deposits1 that form part of the shallow marine sequences of the Rongxi Formation. [6]

Morphology and development

Qianodus is known from 23 tooth whorls of varying state of preservation that range in size from 1.5 to 2.5 mm. A conspicuous feature of the whorls is a pair of primary tooth rows carried by a raised medial area of the whorl base. These teeth show an incremental increase in size towards the inner (lingual) portion of the whorl. The whorls of Qianodus differ from those of other vertebrates in the offset between the two primary tooth rows. The asymmetry of this tooth arrangement is mirrored in the specimens, which exhibit either left or right configurations of the more labial (progenitor) tooth row. This is seen as evidence for tooth whorl positions on opposing jaw rami and combined with other evidence suggests that the dentition of Qianodus was formed of closely spaced tooth whorls distributed along the length of the jaw.

The whorl base is tall and has steep lateral faces that carry arched rows of small, accessory, teeth oriented parallel to the whorl crest. The earliest deposited generations of accessory teeth in each row are located at the tip of the whorl spiral labially of the primary teeth.

Unlike the continuously shedding teeth of modern sharks, [7] the tooth whorls of Qianodus retained their teeth and grew in size throughout the life of the animal. The recorded gradual enlargement of the whorl teeth and the widening of the whorl base was a response to the continuous increase of jaw size during development.

Two of the Qianodus whorls have noticeably smaller sizes and fewer tooth generations and represent early developmental stages. A comparison with the more numerous mature whorls suggests that primary tooth rows were the first to be incepted, whereas the addition of the lateral (accessory) whorl teeth occurred later in development.

Phylogenetic position

Qianodus is placed within the chondrichthyan stem group on the basis of dental characters derived from the limited number of available specimens. [1] Discrete tooth whorls occur in both major clades of crown gnathostomes, [4] the osteichthyans and chondrichthyans, but have not been reported in their placoderm ancestors. The proposed [1] for Qianodus whorl-based dentition is a derived character of chondrichthyans [1] [8] within jawed vertebrates that has been reported in a number of stem lineages, including climatiid acanthodians. [9] [10] [11]

Related Research Articles

<span class="mw-page-title-main">Chondrichthyes</span> Class of jawed cartilaginous fishes

Chondrichthyes is a class of jawed fish that contains the cartilaginous fish or chondrichthyians, which all have skeletons primarily composed of cartilage. They can be contrasted with the Osteichthyes or bony fish, which have skeletons primarily composed of bone tissue. Chondrichthyes are aquatic vertebrates with paired fins, paired nares, placoid scales, conus arteriosus in the heart, and a lack of opecula and swim bladders. Within the infraphylum Gnathostomata, cartilaginous fishes are distinct from all other jawed vertebrates.

<span class="mw-page-title-main">Gnathostomata</span> Infraphylum of vertebrates

Gnathostomata are the jawed vertebrates. Gnathostome diversity comprises roughly 60,000 species, which accounts for 99% of all living vertebrates, including humans. In addition to opposing jaws, living gnathostomes have true teeth, paired appendages, the elastomeric protein of elastin, and a horizontal semicircular canal of the inner ear, along with physiological and cellular anatomical characters such as the myelin sheaths of neurons, and an adaptive immune system that has the discrete lymphoid organs of spleen and thymus, and uses V(D)J recombination to create antigen recognition sites, rather than using genetic recombination in the variable lymphocyte receptor gene.

<span class="mw-page-title-main">Jenny Clack</span> English paleontologist and evolutionary biologist (1947–2020)

Jennifer Alice Clack, was an English palaeontologist and evolutionary biologist. She specialised in the early evolution of tetrapods, specifically studying the "fish to tetrapod" transition: the origin, evolutionary development and radiation of early tetrapods and their relatives among the lobe-finned fishes. She is best known for her book Gaining Ground: the Origin and Early Evolution of Tetrapods, published in 2002 and written with the layperson in mind.

<span class="mw-page-title-main">Acanthodii</span> Class of fishes (fossil)

Acanthodii or acanthodians is an extinct class of gnathostomes. They are currently considered to represent a paraphyletic grade of various fish lineages basal to extant Chondrichthyes, which includes living sharks, rays, and chimaeras. Acanthodians possess a mosaic of features shared with both osteichthyans and chondrichthyans. In general body shape, they were similar to modern sharks, but their epidermis was covered with tiny rhomboid platelets like the scales of holosteians.

<span class="mw-page-title-main">Placoderm</span> Class of fishes (fossil)

Placoderms are members of the class Placodermi of armoured prehistoric fish, known from fossils, which lived from the Silurian to the end of the Devonian period. Their head and thorax were covered by articulated armoured plates and the rest of the body was scaled or naked, depending on the species. Placoderms were among the first jawed fish; their jaws likely evolved from the first of their gill arches.

<i>Cladoselache</i> Extinct genus of chondrichthyans

Cladoselache is an extinct genus of shark-like chondrichthyan from the Late Devonian (Famennian) of North America. It was similar in body shape to modern lamnid sharks, but was not closely related to lamnids or to any other modern (selachian) shark. As an early chondrichthyan, it had yet to evolve traits of modern sharks such as accelerated tooth replacement, a loose jaw suspension, enameloid teeth, and possibly claspers.

<i>Acanthodes</i> Genus of cartilaginous fishes

Acanthodes is an extinct genus of acanthodian fish. Species have been found in Europe, North America, and Asia, spanning the Early Carboniferous to the Early Permian, making it one of the youngest known acanthodian genera.

Andreolepis is an extinct genus of prehistoric fish, which lived around 420 million years ago. It was described by Walter Gross in 1968 based on scales found in the Hemse Formation in Gotland, Sweden. It is placed in the monogeneric family Andreolepididae and is generally regarded as a primitive member of the class Actinopterygii based on its ganoid scale structure; however some new research regards it as a stem group of osteichthyans.

The Xitun Formation is a palaeontological formation which is named after Xitun village in Qujing, a location in South China. This formation includes many remains of fossilized fish and plants of the Early Devonian period. It was originally referred to as the Xitun Member of the Cuifengshan Formation.

<span class="mw-page-title-main">Tooth</span> Hard, calcified structure found in the mouths of many vertebrates

A tooth is a hard, calcified structure found in the jaws of many vertebrates and used to break down food. Some animals, particularly carnivores and omnivores, also use teeth to help with capturing or wounding prey, tearing food, for defensive purposes, to intimidate other animals often including their own, or to carry prey or their young. The roots of teeth are covered by gums. Teeth are not made of bone, but rather of multiple tissues of varying density and hardness that originate from the outermost embryonic germ layer, the ectoderm.

<span class="mw-page-title-main">Evolution of fish</span> Origin and diversification of fish through geologic time

The evolution of fish began about 530 million years ago during the Cambrian explosion. It was during this time that the early chordates developed the skull and the vertebral column, leading to the first craniates and vertebrates. The first fish lineages belong to the Agnatha, or jawless fish. Early examples include Haikouichthys. During the late Cambrian, eel-like jawless fish called the conodonts, and small mostly armoured fish known as ostracoderms, first appeared. Most jawless fish are now extinct; but the extant lampreys may approximate ancient pre-jawed fish. Lampreys belong to the Cyclostomata, which includes the extant hagfish, and this group may have split early on from other agnathans.

<i>Brochoadmones</i> Extinct genus of cartilaginous fishes

Brochoadmones is an extinct genus of acanthodian from the Devonian of what is now Canada. It is the only genus in the suborder Brochoadmonoidei, whose relationship to other acanthodian orders remains currently in flux.

<i>Romundina</i> Early Devonian genus of placoderm fish

Romundina is a small, heavily armored extinct genus of acanthothoracid placoderms which lived in shallow marine environments in the early Devonian (Lochkovian). The name Romundina honors Canadian geologist and paleontologist Dr. Rómundur (Raymond) Thorsteinsson of Calgary, Alberta, Canada. Romundina are believed to have lived on Earth between 400 and 419 million years ago. The closest known relative to Romundina is the acanthothoracid Radotina. The type and only described species is R. stellina.

This list of fossil fishes described in 2017 is a list of new taxa of jawless vertebrates, placoderms, acanthodians, fossil cartilaginous fishes, bony fishes and other fishes of every kind that are scheduled to be described during the year 2017, as well as other significant discoveries and events related to paleontology of fishes that are scheduled to occur in the year 2017. The list only includes taxa at the level of genus or species.

<i>Ptomacanthus</i> Extinct genus of cartilaginous fishes

Ptomacanthus is an extinct genus of spiny shark, an early relative of living cartilaginous fishes.

This list of fossil fish described in 2018 is a list of new taxa of jawless vertebrates, placoderms, acanthodians, fossil cartilaginous fish, bony fish, and other fish of every kind that are scheduled to be described during the year 2018, as well as other significant discoveries and events related to paleontology of fish that are scheduled to occur in 2018.

<span class="mw-page-title-main">Sam Giles</span> Paleontologist

Sam Giles is a palaeobiologist at the University of Birmingham. Her research combines modern imaging with fossils to understand the evolution of life, in particular that of early fish, and in 2015 "rewrote" the vertebrate family tree. She was a 2017 L'Oréal-UNESCO Rising Star and won the 2019 Geological Society of London Lyell Fund.

This list of fossil fish research presented in 2021 is a list of new taxa of jawless vertebrates, placoderms, acanthodians, fossil cartilaginous fishes, bony fishes, and other fishes that were described during the year, as well as other significant discoveries and events related to paleoichthyology that occurred in 2021.

Professor Kate Trinajstic or Katherine M. Trinajstic is an Australian palaeontologist, evolutionary biologist, and winner of the Dorothy Hill Award. She is the Dean of Research, Faculty of Science and Engineering at Curtin University.

References

  1. 1 2 3 4 5 Andreev, Plamen S.; Sansom, Ivan J.; Li, Qiang; Zhao, Wenjin; Wang, Jianhua; Wang, Chun-Chieh; Peng, Lijian; Jia, Liantao; Qiao, Tuo; Zhu, Min (2022-09-28). "The oldest gnathostome teeth". Nature. 609 (7929): 964–968. Bibcode:2022Natur.609..964A. doi:10.1038/s41586-022-05166-2. ISSN   0028-0836. PMID   36171375. S2CID   252569771.
  2. Maisey, John G.; Turner, Susan; Naylor, Gavin J.P.; Miller, Randall F. (December 2013). "Dental patterning in the earliest sharks: Implications for tooth evolution". Journal of Morphology. 275 (5): 586–596. doi:10.1002/jmor.20242. ISSN   0362-2525. PMID   24347366. S2CID   22115814.
  3. Qu, Qingming; Sanchez, Sophie; Blom, Henning; Tafforeau, Paul; Ahlberg, Per Erik (2013-08-12). "Scales and Tooth Whorls of Ancient Fishes Challenge Distinction between External and Oral 'Teeth'". PLOS ONE. 8 (8): e71890. Bibcode:2013PLoSO...871890Q. doi: 10.1371/journal.pone.0071890 . ISSN   1932-6203. PMC   3741376 . PMID   23951264.
  4. 1 2 Rücklin, Martin; King, Benedict; Cunningham, John A.; Johanson, Zerina; Marone, Federica; Donoghue, Philip C. J. (2021-05-06). "Acanthodian dental development and the origin of gnathostome dentitions". Nature Ecology & Evolution. 5 (7): 919–926. doi:10.1038/s41559-021-01458-4. hdl: 1983/27f9a13a-1441-410e-b9a7-116b42cd40f7 . ISSN   2397-334X. PMID   33958756. S2CID   233985000.
  5. Brazeau, Martin D.; Friedman, Matt (2015-04-22). "The origin and early phylogenetic history of jawed vertebrates". Nature. 520 (7548): 490–497. Bibcode:2015Natur.520..490B. doi:10.1038/nature14438. ISSN   0028-0836. PMC   4648279 . PMID   25903631.
  6. Rong, JiaYu; Wang, Yi; Zhang, XiaoLe (2012-03-22). "Tracking shallow marine red beds through geological time as exemplified by the lower Telychian (Silurian) in the Upper Yangtze Region, South China". Science China Earth Sciences. 55 (5): 699–713. Bibcode:2012ScChD..55..699R. doi:10.1007/s11430-012-4376-5. ISSN   1674-7313. S2CID   195310068.
  7. Underwood, Charlie; Johanson, Zerina; Smith, Moya Meredith (November 2016). "Cutting blade dentitions in squaliform sharks form by modification of inherited alternate tooth ordering patterns". Royal Society Open Science. 3 (11): 160385. Bibcode:2016RSOS....360385U. doi:10.1098/rsos.160385. ISSN   2054-5703. PMC   5180115 . PMID   28018617.
  8. Dearden, Richard; Giles, Sam (2021). "Diverse stem-chondrichthyan oral structures and evidence for an independently acquired acanthodid dentition". Royal Society Open Science. 8 (11): 210822. Bibcode:2021RSOS....810822D. doi:10.1098/rsos.210822. PMC   8580420 . PMID   34804566.
  9. Brazeau, Martin D. (January 2009). "The braincase and jaws of a Devonian 'acanthodian' and modern gnathostome origins". Nature. 457 (7227): 305–308. Bibcode:2009Natur.457..305B. doi:10.1038/nature07436. hdl: 10044/1/17971 . ISSN   0028-0836. PMID   19148098. S2CID   4321057.
  10. Burrow, Carole J.; Davidson, Robert G.; Den Blaauwen, Jan L.; Newman, Michael J. (2015-04-03). "Revision ofClimatius reticulatusAgassiz, 1844 (Acanthodii, Climatiidae), from the Lower Devonian of Scotland, based on new histological and morphological data". Journal of Vertebrate Paleontology. 35 (3): e913421. doi:10.1080/02724634.2014.913421. ISSN   0272-4634. S2CID   84156211.
  11. Burrow, Carole J.; Newman, Michael J.; Davidson, Robert G.; den Blaauwen, Jan L. (September 2013). "Redescription ofParexus recurvus, an Early Devonian acanthodian from the Midland Valley of Scotland". Alcheringa: An Australasian Journal of Palaeontology. 37 (3): 392–414. doi:10.1080/03115518.2013.765656. ISSN   0311-5518. S2CID   84927480.