R2000 microprocessor

Last updated

The R2000 is a 32-bit microprocessor chip set developed by MIPS Computer Systems that implemented the MIPS I instruction set architecture (ISA). Introduced in January 1986, it was, by a few months, the first commercial implementation of the RISC architecture. The R2000 competed with Digital Equipment Corporation (DEC) VAX minicomputers and with Motorola 68000 and Intel Corporation 80386 microprocessors. R2000 users included Ardent Computer, DEC, Silicon Graphics, Northern Telecom and MIPS's own Unix workstations.

The chip set consisted of the R2000 microprocessor, R2010 floating-point accelerator, and four R2020 write buffer chips. The core R2000 chip executed all non-floating-point instructions with a simple short pipeline. This chip also controlled the external code and data caches, made of fast standard SRAM chips organized with direct indexing and one-cycle read latency. The R2000 chip contained a small translation lookaside buffer for mapping virtual memory addresses. The R2010 chip held the floating point registers, floating point data paths, and their longer simple pipeline. Writes to main memory DRAM took tens of cycles to fully complete. But the R2020 chips queued and completed up to 4 pending writes to main memory, allowing the R2000 core to proceed without stalling itself. In the absence of cache misses, this chip set sustained an instruction completion rate of one instruction per ALU cycle. This was more efficient than non-RISC microprocessors of that time, which needed several cycles per instruction. The initial R2000A, clocked at 12.5 MHz, offered 8-10 Million integer Instructions Per Second (MIPS), or 0.9 Million FLoating Point Operations Per Second (MFLOPS), and would appear in the like of the 1987 SGI IRIS 4D and 1988 DECstation 2100 workstations. [1] [2] 1986 also saw similar technology in Sun's first SPARC microprocessor, Hewlett Packard's first PA-RISC microprocessor, and the first Acorn RISC Machine (ARM) evaluation kits shipping to developers. [3]

Overall speed was limited by the cache size and cache cycle time. The R2000 chip set and SRAM was initially sold only as a complete circuit board to ensure good cache bus timings. In 1987 system builders began using the chip set in arbitrary new board designs.

The R2000 was available in 8.3, 12.5 and 15 MHz grades. The die contained 110,000 transistors and measured 80 mm2 in a 2.0 μm double-metal CMOS process. MIPS was a fabless semiconductor company, that is, they did not have the capability to fabricate integrated circuits. The chip set was initially fabricated for MIPS by Sierra Semiconductor and Toshiba. In December 1987, MIPS licensed Integrated Device Technology, LSI Logic, and Performance Semiconductor to also fabricate and market the R2000. Sierra and Toshiba continued to serve as foundries.

LSI fabricated the chip set in its 2.0 μm double-metal CMOS process and marketed it as the LR2000. Performance Semiconductor fabricated the chip set in its PACE-I 0.8 μm double-metal CMOS process and marketed it as the PR2000.

In 1988, an improved version was introduced, the R2000A. It was composed of the R2000A and R2010A ICs. It operated at 12.5 and 16.67 MHz. It has been used extensively in embedded applications such as printer controllers.

In 1988, the R2000 was followed by the R3000, using a similar overall system design but faster chip implementation.

Related Research Articles

<span class="mw-page-title-main">StrongARM</span> Family of computer microprocessors

The StrongARM is a family of computer microprocessors developed by Digital Equipment Corporation and manufactured in the late 1990s which implemented the ARM v4 instruction set architecture. It was later acquired by Intel in 1997 from DEC's own Digital Semiconductor division as part of a settlement of a lawsuit between the two companies over patent infringement. Intel then continued to manufacture it before replacing it with the StrongARM-derived ARM-based follow-up architecture called XScale in the early 2000s.

<span class="mw-page-title-main">DECstation</span> DEC brand of computers

The DECstation was a brand of computers used by DEC, and refers to three distinct lines of computer systems—the first released in 1978 as a word processing system, and the latter two both released in 1989. These comprised a range of computer workstations based on the MIPS architecture and a range of PC compatibles. The MIPS-based workstations ran ULTRIX, a DEC-proprietary version of UNIX, and early releases of OSF/1.

<span class="mw-page-title-main">CVAX</span> Microprocessor chipset

The CVAX is a microprocessor chipset developed and fabricated by Digital Equipment Corporation (DEC) that implemented the VAX instruction set architecture (ISA). The chipset consisted of the CVAX 78034 CPU, CFPA floating-point accelerator, CVAX clock chip, and the associated support chips, the CVAX System Support Chip (CSSC), CVAX Memory Controller (CMCTL), and CVAX Q-Bus Interface Chip (CQBIC).

<span class="mw-page-title-main">R10000</span> MIPS microprocessor

The R10000, code-named "T5", is a RISC microprocessor implementation of the MIPS IV instruction set architecture (ISA) developed by MIPS Technologies, Inc. (MTI), then a division of Silicon Graphics, Inc. (SGI). The chief designers are Chris Rowen and Kenneth C. Yeager. The R10000 microarchitecture is known as ANDES, an abbreviation for Architecture with Non-sequential Dynamic Execution Scheduling. The R10000 largely replaces the R8000 in the high-end and the R4400 elsewhere. MTI was a fabless semiconductor company; the R10000 was fabricated by NEC and Toshiba. Previous fabricators of MIPS microprocessors such as Integrated Device Technology (IDT) and three others did not fabricate the R10000 as it was more expensive to do so than the R4000 and R4400.

<span class="mw-page-title-main">R3000</span> RISC microprocessor

The R3000 is a 32-bit RISC microprocessor chipset developed by MIPS Computer Systems that implemented the MIPS I instruction set architecture (ISA). Introduced in June 1988, it was the second MIPS implementation, succeeding the R2000 as the flagship MIPS microprocessor. It operated at 20, 25 and 33.33 MHz.

<span class="mw-page-title-main">R4000</span> MIPS microprocessor

The R4000 is a microprocessor developed by MIPS Computer Systems that implements the MIPS III instruction set architecture (ISA). Officially announced on 1 October 1991, it was one of the first 64-bit microprocessors and the first MIPS III implementation. In the early 1990s, when RISC microprocessors were expected to replace CISC microprocessors such as the Intel i486, the R4000 was selected to be the microprocessor of the Advanced Computing Environment (ACE), an industry standard that intended to define a common RISC platform. ACE ultimately failed for a number of reasons, but the R4000 found success in the workstation and server markets.

<span class="mw-page-title-main">R5000</span>

The R5000 is a 64-bit, bi-endian, superscalar, in-order execution 2-issue design microprocessor that implements the MIPS IV instruction set architecture (ISA) developed by Quantum Effect Design (QED) in 1996. The project was funded by MIPS Technologies, Inc (MTI), also the licensor. MTI then licensed the design to Integrated Device Technology (IDT), NEC, NKK, and Toshiba. The R5000 succeeded the QED R4600 and R4700 as their flagship high-end embedded microprocessor. IDT marketed its version of the R5000 as the 79RV5000, NEC as VR5000, NKK as the NR5000, and Toshiba as the TX5000. The R5000 was sold to PMC-Sierra when the company acquired QED. Derivatives of the R5000 are still in production today for embedded systems.

The R8000 is a microprocessor chipset developed by MIPS Technologies, Inc. (MTI), Toshiba, and Weitek. It was the first implementation of the MIPS IV instruction set architecture. The R8000 is also known as the TFP, for Tremendous Floating-Point, its name during development.

<span class="mw-page-title-main">NEC V60</span> CISC microprocessor

The NEC V60 is a CISC microprocessor manufactured by NEC starting in 1986. Several improved versions were introduced with the same instruction set architecture (ISA), the V70 in 1987, and the V80 and AFPP in 1989. They were succeeded by the V800 product families, which is currently produced by Renesas Electronics.

<span class="mw-page-title-main">Alpha 21064</span> Microprocessor

The Alpha 21064 is a microprocessor developed and fabricated by Digital Equipment Corporation that implemented the Alpha instruction set architecture (ISA). It was introduced as the DECchip 21064 before it was renamed in 1994. The 21064 is also known by its code name, EV4. It was announced in February 1992 with volume availability in September 1992. The 21064 was the first commercial implementation of the Alpha ISA, and the first microprocessor from Digital to be available commercially. It was succeeded by a derivative, the Alpha 21064A in October 1993. This last version was replaced by the Alpha 21164 in 1995.

<span class="mw-page-title-main">Alpha 21164</span> Microprocessor

The Alpha 21164, also known by its code name, EV5, is a microprocessor developed and fabricated by Digital Equipment Corporation that implemented the Alpha instruction set architecture (ISA). It was introduced in January 1995, succeeding the Alpha 21064A as Digital's flagship microprocessor. It was succeeded by the Alpha 21264 in 1998.

<span class="mw-page-title-main">Alpha 21264</span> RISC microprocessor

The Alpha 21264 is a RISC microprocessor developed by Digital Equipment Corporation launched on 19 October 1998. The 21264 implemented the Alpha instruction set architecture (ISA).

<span class="mw-page-title-main">PA-8000</span> HP microprocessor

The PA-8000 (PCX-U), code-named Onyx, is a microprocessor developed and fabricated by Hewlett-Packard (HP) that implemented the PA-RISC 2.0 instruction set architecture (ISA). It was a completely new design with no circuitry derived from previous PA-RISC microprocessors. The PA-8000 was introduced on 2 November 1995 when shipments began to members of the Precision RISC Organization (PRO). It was used exclusively by PRO members and was not sold on the merchant market. All follow-on PA-8x00 processors are based on the basic PA-8000 processor core.

<span class="mw-page-title-main">UltraSPARC III</span> Microprocessor developed by Sun Microsystems

The UltraSPARC III, code-named "Cheetah", is a microprocessor that implements the SPARC V9 instruction set architecture (ISA) developed by Sun Microsystems and fabricated by Texas Instruments. It was introduced in 2001 and operates at 600 to 900 MHz. It was succeeded by the UltraSPARC IV in 2004. Gary Lauterbach was the chief architect.

<span class="mw-page-title-main">Motorola 88110</span> Microprocessor developed by Motorola

The MC88110 was a microprocessor developed by Motorola that implemented the 88000 instruction set architecture (ISA). The MC88110 was a second-generation implementation of the 88000 ISA, succeeding the MC88100. It was designed for use in personal computers and workstations.

The x704 is a microprocessor that implements the 32-bit version of the PowerPC instruction set architecture (ISA) developed by Exponential Technology. The microprocessor was notable for its high clock frequency in the range of 400 to 533 MHz, its use of bipolar transistors for logic and CMOS circuits for memory, and its failure to see use in an Apple Macintosh, the opposite of what industry observers such as Microprocessor Report expected. Exponential Technology eventually failed as a result of the x704's lack of success, but some of its former employees founded Intrinsity, a start-up that developed a high clock frequency MIPS implementation, FastMATH.

The R4200 is a microprocessor designed by MIPS Technologies, Inc. (MTI) that implemented the MIPS III instruction set architecture (ISA). It was also known as the VRX during development. The microprocessor was licensed to NEC, and the company fabricated and marketed it as the VR4200. The first VR4200, an 80 MHz part, was introduced in 1993. A faster 100 MHz part became available in 1994.

<span class="mw-page-title-main">PA-7100LC</span> Microprocessor developed by Hewlett-Packard

The PA-7100LC is a microprocessor that implements the PA-RISC 1.1 instruction set architecture (ISA) developed by Hewlett-Packard (HP). It is also known as the PCX-L, and by its code-name, Hummingbird. It was designed as a low-cost microprocessor for low-end systems. The first systems to feature the PA-7100LC were introduced in January 1994. These systems used 60 and 80 MHz clock rates. A 100 MHz part debuted in June 1994. The PA-7100LC was the first PA-RISC microprocessor to implement the MAX-1 multimedia instructions, an early single instruction, multiple data (SIMD) multimedia instruction set extension that provided instructions for improving the performance of MPEG video decoding.

<span class="mw-page-title-main">R4600</span>

The R4600, code-named "Orion", is a microprocessor developed by Quantum Effect Design (QED) that implemented the MIPS III instruction set architecture (ISA). As QED was a design firm that did not fabricate or sell their designs, the R4600 was first licensed to Integrated Device Technology (IDT), and later to Toshiba and then NKK. These companies fabricated the microprocessor and marketed it. The R4600 was designed as a low-end workstation or high-end embedded microprocessor. Users included Silicon Graphics, Inc. (SGI) for their Indy workstation and DeskStation Technology for their Windows NT workstations. The R4600 was instrumental in making the Indy successful by providing good integer performance at a competitive price. In embedded systems, prominent users included Cisco Systems in their network routers and Canon in their printers.

Since 1985, many processors implementing some version of the MIPS architecture have been designed and used widely.

References

  1. "Personal IRIS - 4D-20 One-sheet". 1988.
  2. "DECstation 2100". web.archive.org. Retrieved 2024-08-20.
  3. "Acorn Announces the ARM evaluation kit" (PDF). Chris's Acorns. 7 Jul 1986.