RAPGEF3

Last updated
RAPGEF3
Identifiers
Aliases RAPGEF3 , CAMP-GEFI, EPAC, EPAC1, HSU79275, bcm910, Rap guanine nucleotide exchange factor 3
External IDs OMIM: 606057 MGI: 2441741 HomoloGene: 21231 GeneCards: RAPGEF3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001098531
NM_001098532
NM_006105

NM_001177810
NM_001177811
NM_144850
NM_001357630

RefSeq (protein)

NP_001092001
NP_001092002
NP_006096

NP_001171281
NP_001171282
NP_659099
NP_001344559

Location (UCSC) Chr 12: 47.73 – 47.77 Mb Chr 15: 97.74 – 97.77 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Rap guanine nucleotide exchange factor 3 also known as exchange factor directly activated by cAMP 1 (EPAC1) or cAMP-regulated guanine nucleotide exchange factor I (cAMP-GEFI) is a protein that in humans is encoded by the RAPGEF3 gene. [5] [6] [7]

Contents

As the name suggests, EPAC proteins (EPAC1 and EPAC2) are a family of intracellular sensors for cAMP, and function as nucleotide exchange factors for the Rap subfamily of RAS-like small GTPases.

History and discovery

Since the landmark discovery of the prototypic second messenger cAMP in 1957, three families of eukaryotic cAMP receptors have been identified to mediate the intracellular functions of cAMP. While protein kinase A (PKA) or cAMP-dependent protein kinase and cyclic nucleotide regulated ion channel (CNG and HCN) were initially unveiled in 1968 and 1985 respectively; EPAC genes were discovered in 1998 independently by two research groups. Kawasaki et al. identified cAMP-GEFI and cAMP-GEFII as novel genes enriched in brain using a differential display protocol and by screening clones with cAMP-binding motif. [7] De Rooij and colleagues performed a database search for proteins with sequence homology to both GEFs for Ras and Rap1 and to cAMP-binding sites, which led to the identification and subsequent cloning of RAPGEF3 gene. [6] The discovery of EPAC family cAMP sensors suggests that the complexity and possible readouts of cAMP signaling are much more elaborate than previously envisioned. This is due to the fact that the net physiological effects of cAMP entail the integration of EPAC- and PKA-dependent pathways, which may act independently, converge synergistically, or oppose each other in regulating a specific cellular function. [8] [9] [10]

Gene

Human RAPGEF3 gene is present on chromosome 12 (12q13.11: 47,734,367-47,771,041). [11] Out of the many predicted transcript variants, three that are validated in the NCBI database include transcript variant 1 (6,239 bp), 2 (5,773 bp) and 3 (6,003 bp). While variant 1 encodes for EPAC1a (923 amino acids), both variant 2 and 3 encode EPAC1b (881 amino acids). [5]

Protein family

In mammals, the EPAC protein family contains two members: EPAC1 (this protein) and EPAC2 ( RAPGEF4 ). They further belong to a more extended family of Rap/Ras-specific GEF proteins that also include C3G ( RAPGEF1 ), PDZ-GEF1 ( RAPGEF2 ), PDZ-GEF2 ( RAPGEF6 ), Repac ( RAPGEF5 ), CalDAG-GEF1 ( ARHGEF1 ), CalDAG-GEF3 ( ARHGEF3 ), PLCε1 ( PLCE1 ) and RasGEF1A, B, C.

Protein structure and mechanism of activation

EPAC proteins consist of two structural lobes/halves connected by the so-called central “switchboard” region. [12] The N terminal regulatory lobe is responsible for cAMP binding while the C-terminal lobe contains the nucleotide exchange factor activity. At the basal cAMP-free state, EPAC is kept in an auto-inhibitory conformation, in which the N-terminal lobe folds on top of the C-terminal lobe, blocking the active site. [13] [14] Binding of cAMP to EPAC induces a hinge motion between the regulatory and catalytic halves. As a consequence, the regulatory lobe moves away from catalytic lobe, freeing the active site. [15] [16] In addition, cAMP also prompts conformational changes within the regulatory lobe that lead to the exposure of a lipid binding motif, allowing the proper targeting of EPAC1 to the plasma membrane. [17] [18] Entropically favorable changes in protein dynamics have also been implicated in cAMP mediated EPAC activation. [19] [20]

Tissue distribution and cellular localization

Human and mice EPAC1 mRNA expression is rather ubiquitous. As per Human Protein Atlas documentation, EPAC1 mRNA is detectable in all normal human tissues. Further, medium to high levels of corresponding protein are also measureable in more than 50% of the 80 tissue samples analyzed. [21] In mice, high levels of EPAC1 mRNA are detected in kidney, ovary, skeletal muscle, thyroid and certain areas of the brain. [7]

EPAC1 is a multifunctional protein whose cellular functions are tightly regulated in spatial and temporal manners. EPAC1 is localized to various subcellular locations during different stages of the cell cycle. [22] Through interactions with an array of cellular partners, EPAC1 has been shown to form discrete signalsomes at plasma membrane, [18] [23] [24] [25] nuclear-envelope, [26] [27] [28] and cytoskeleton, [29] [30] [31] where EPAC1 regulates numerous cellular functions.

Clinical relevance

Studies based on genetically engineered mouse models of EPAC1 have provided valuable insights into understanding the in vivo functions of EPAC1 under both physiological and pathophysiological conditions. Overall, mice deficient of EPAC1 or both EPAC1 and EPAC2 appear relatively normal without major phenotypic defects. These observations are consistent with the fact that cAMP is a major stress response signal not essential for survival. This makes EPAC1 an attractive target for therapeutic intervention as the on-target toxicity of EPAC-based therapeutics will likely be low. Up to date, genetic and pharmacological analyses of EPAC1 in mice have revealed that EPAC1 plays important roles in cardiac stresses and heart failure, [32] [33] leptin resistance and energy homeostasis, [34] [35] [36] chronic pain, [37] [38] infection, [39] [40] cancer metastasis, [41] metabolism [42] and secondary hemostasis. [43] Interestingly, EPAC1 deficient mice have prolonged clotting time and fewer, younger, larger and more agonist-responsive blood platelets. EPAC1 is not present in mature platelets, but is required for normal megakaryopoiesis and the subsequent expression of several important proteins involved in key platelets functions. [43]

Pharmacological agonists and antagonists

There have been significant interests in discovering and developing small modulators specific for EPAC proteins for better understanding the functions of EPAC mediated cAMP signaling, as well as for exploring the therapeutic potential of targeting EPAC proteins. Structure-based design targeting the key difference between the cAMP binding sites of EPAC and PKA led to the identification of a cAMP analogue, 8-pCPT-2’-O-Me-cAMP that is capable of selectively activate EPAC1. [44] [45] Further modifications allowed the development of more membrane permeable and metabolically stable EPAC-specific agonists. [46] [47] [48] [49]

A high throughput screening effort resulted in the discovery of several novel EPAC specific inhibitors (ESIs), [50] [51] [52] among which two ESIs act as EPAC2 selective antagonists with negligible activity towards EPAC1. [51] Another ESI, CE3F4, with modest selectivity for EPAC1 over EPAC2, has also been reported. [53] The discovery of EPAC specific antagonists represents a research milestone that allows the pharmacological manipulation of EPAC activity. In particular, one EPAC antagonist, ESI-09, with excellent activity and minimal toxicity in vivo, has been shown to be a useful pharmacological tool for probing physiological functions of EPAC proteins and for testing therapeutic potential of targeting EPAC in animal disease models. [39] [41] [54]

Notes

Related Research Articles

<span class="mw-page-title-main">Cyclic adenosine monophosphate</span> Cellular second messenger

Cyclic adenosine monophosphate is a second messenger, or cellular signal occurring within cells, that is important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transduction in many different organisms, conveying the cAMP-dependent pathway.

<span class="mw-page-title-main">Cyclic nucleotide</span> Cyclic nucleic acid

A cyclic nucleotide (cNMP) is a single-phosphate nucleotide with a cyclic bond arrangement between the sugar and phosphate groups. Like other nucleotides, cyclic nucleotides are composed of three functional groups: a sugar, a nitrogenous base, and a single phosphate group. As can be seen in the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) images, the 'cyclic' portion consists of two bonds between the phosphate group and the 3' and 5' hydroxyl groups of the sugar, very often a ribose.

<span class="mw-page-title-main">Nucleotide exchange factor</span>

Nucleotide exchange factors (NEFs) are proteins that stimulate the exchange (replacement) of nucleoside diphosphates for nucleoside triphosphates bound to other proteins.

Biological crosstalk refers to instances in which one or more components of one signal transduction pathway affects another. This can be achieved through a number of ways with the most common form being crosstalk between proteins of signaling cascades. In these signal transduction pathways, there are often shared components that can interact with either pathway. A more complex instance of crosstalk can be observed with transmembrane crosstalk between the extracellular matrix (ECM) and the cytoskeleton.

<span class="mw-page-title-main">RAP1GAP</span> Protein-coding gene in the species Homo sapiens

Rap1 GTPase-activating protein 1 is an enzyme that in humans is encoded by the RAP1GAP gene.

<span class="mw-page-title-main">RALGDS</span> Protein-coding gene in the species Homo sapiens

Ral guanine nucleotide dissociation stimulator is a protein that is encoded by the RALGDS gene in humans.

<span class="mw-page-title-main">RAP2A</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rap-2a is a protein that in humans is encoded by the RAP2A gene. RAP2A is a member of the Ras-related protein family.

<span class="mw-page-title-main">HCN2</span> Protein-coding gene in the species Homo sapiens

Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated ion channel 2 is a protein that in humans is encoded by the HCN2 gene.

<span class="mw-page-title-main">ARHGEF12</span> Protein-coding gene in the species Homo sapiens

Rho guanine nucleotide exchange factor 12 is a protein that in humans is encoded by the ARHGEF12 gene. This protein is also called RhoGEF12 or Leukemia-associated Rho guanine nucleotide exchange factor (LARG).

<span class="mw-page-title-main">RAPGEF4</span> Protein-coding gene in the species Homo sapiens

Rap guanine nucleotide exchange factor (GEF) 4 (RAPGEF4), also known as exchange protein directly activated by cAMP 2 (EPAC2) is a protein that in humans is encoded by the RAPGEF4 gene.

<span class="mw-page-title-main">RAP2B</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rap-2b is a protein that in humans is encoded by the RAP2B gene. RAP2B belongs to the Ras-related protein family.

<span class="mw-page-title-main">HCN1</span> Protein-coding gene in the species Homo sapiens

Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 1 is a protein that in humans is encoded by the HCN1 gene.

Hyperpolarization-activated cyclic nucleotide–gated (HCN) channels are integral membrane proteins that serve as nonselective voltage-gated cation channels in the plasma membranes of heart and brain cells. HCN channels are sometimes referred to as pacemaker channels because they help to generate rhythmic activity within groups of heart and brain cells. HCN channels are activated by membrane hyperpolarization, are permeable to Na + and K +, and are constitutively open at voltages near the resting membrane potential. HCN channels are encoded by four genes and are widely expressed throughout the heart and the central nervous system.

<span class="mw-page-title-main">RAPGEF2</span> Protein-coding gene in the species Homo sapiens

Rap guanine nucleotide exchange factor 2 is a protein that in humans is encoded by the RAPGEF2 gene.

<span class="mw-page-title-main">Cyclic nucleotide-gated channel alpha 2</span> Protein-coding gene in humans

Cyclic nucleotide gated channel alpha 2, also known as CNGA2, is a human gene encoding an ion channel protein.

<span class="mw-page-title-main">HCN3</span> Protein-coding gene in the species Homo sapiens

Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 is a protein that in humans is encoded by the HCN3 gene.

<span class="mw-page-title-main">RAPGEF5</span> Protein-coding gene in the species Homo sapiens

Rap guanine nucleotide exchange factor 5 is a protein that in humans is encoded by the RAPGEF5 gene.

In the field of molecular biology, the cAMP-dependent pathway, also known as the adenylyl cyclase pathway, is a G protein-coupled receptor-triggered signaling cascade used in cell communication.

<span class="mw-page-title-main">RAP1B</span> Protein-coding gene in the species Homo sapiens

Ras-related protein Rap-1b, also known as GTP-binding protein smg p21B, is a protein that in humans is encoded by the RAP1B gene.

<span class="mw-page-title-main">Cyclic di-AMP</span> Chemical compound

Cyclic di-AMP is a second messenger used in signal transduction in bacteria and archaea. It is present in many Gram-positive bacteria, some Gram-negative species, and archaea of the phylum euryarchaeota.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000079337 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000022469 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 "Entrez". Entrez gene. Retrieved 19 June 2015.
  6. 1 2 de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A, Bos JL (December 1998). "Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP". Nature. 396 (6710): 474–7. Bibcode:1998Natur.396..474D. doi:10.1038/24884. PMID   9853756. S2CID   204996248.
  7. 1 2 3 Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, et al. (December 1998). "A family of cAMP-binding proteins that directly activate Rap1". Science. 282 (5397): 2275–9. Bibcode:1998Sci...282.2275K. doi:10.1126/science.282.5397.2275. PMID   9856955.
  8. Mei FC, Qiao J, Tsygankova OM, Meinkoth JL, Quilliam LA, Cheng X (March 2002). "Differential signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation". The Journal of Biological Chemistry. 277 (13): 11497–504. doi: 10.1074/jbc.M110856200 . PMID   11801596.
  9. Cheng X, Ji Z, Tsalkova T, Mei F (July 2008). "Epac and PKA: a tale of two intracellular cAMP receptors". Acta Biochimica et Biophysica Sinica. 40 (7): 651–62. doi:10.1111/j.1745-7270.2008.00438.x. PMC   2630796 . PMID   18604457.
  10. Huston E, Lynch MJ, Mohamed A, Collins DM, Hill EV, MacLeod R, et al. (September 2008). "EPAC and PKA allow cAMP dual control over DNA-PK nuclear translocation". Proceedings of the National Academy of Sciences of the United States of America. 105 (35): 12791–6. Bibcode:2008PNAS..10512791H. doi: 10.1073/pnas.0805167105 . PMC   2529053 . PMID   18728186.
  11. "Ensembl". H. Human RAPGEF3 gene. Retrieved 19 June 2015.
  12. Rehmann H, Das J, Knipscheer P, Wittinghofer A, Bos JL (February 2006). "Structure of the cyclic-AMP-responsive exchange factor Epac2 in its auto-inhibited state". Nature. 439 (7076): 625–8. Bibcode:2006Natur.439..625R. doi:10.1038/nature04468. PMID   16452984. S2CID   4423485.
  13. de Rooij J, Rehmann H, van Triest M, Cool RH, Wittinghofer A, Bos JL (July 2000). "Mechanism of regulation of the Epac family of cAMP-dependent RapGEFs". The Journal of Biological Chemistry. 275 (27): 20829–36. doi: 10.1074/jbc.M001113200 . PMID   10777494.
  14. Rehmann H, Rueppel A, Bos JL, Wittinghofer A (June 2003). "Communication between the regulatory and the catalytic region of the cAMP-responsive guanine nucleotide exchange factor Epac". The Journal of Biological Chemistry. 278 (26): 23508–14. doi: 10.1074/jbc.M301680200 . PMID   12707263.
  15. Rehmann H, Arias-Palomo E, Hadders MA, Schwede F, Llorca O, Bos JL (September 2008). "Structure of Epac2 in complex with a cyclic AMP analogue and RAP1B". Nature. 455 (7209): 124–7. Bibcode:2008Natur.455..124R. doi:10.1038/nature07187. PMID   18660803. S2CID   4393652.
  16. Tsalkova T, Blumenthal DK, Mei FC, White MA, Cheng X (August 2009). "Mechanism of Epac activation: structural and functional analyses of Epac2 hinge mutants with constitutive and reduced activities". The Journal of Biological Chemistry. 284 (35): 23644–51. doi: 10.1074/jbc.M109.024950 . PMC   2749139 . PMID   19553663.
  17. Li S, Tsalkova T, White MA, Mei FC, Liu T, Wang D, et al. (May 2011). "Mechanism of intracellular cAMP sensor Epac2 activation: cAMP-induced conformational changes identified by amide hydrogen/deuterium exchange mass spectrometry (DXMS)". The Journal of Biological Chemistry. 286 (20): 17889–97. doi: 10.1074/jbc.M111.224535 . PMC   3093864 . PMID   21454623.
  18. 1 2 Consonni SV, Gloerich M, Spanjaard E, Bos JL (March 2012). "cAMP regulates DEP domain-mediated binding of the guanine nucleotide exchange factor Epac1 to phosphatidic acid at the plasma membrane". Proceedings of the National Academy of Sciences of the United States of America. 109 (10): 3814–9. Bibcode:2012PNAS..109.3814C. doi: 10.1073/pnas.1117599109 . PMC   3309772 . PMID   22343288.
  19. Das R, Chowdhury S, Mazhab-Jafari MT, Sildas S, Selvaratnam R, Melacini G (August 2009). "Dynamically driven ligand selectivity in cyclic nucleotide binding domains". The Journal of Biological Chemistry. 284 (35): 23682–96. doi: 10.1074/jbc.M109.011700 . PMC   2749143 . PMID   19403523.
  20. VanSchouwen B, Selvaratnam R, Fogolari F, Melacini G (December 2011). "Role of dynamics in the autoinhibition and activation of the exchange protein directly activated by cyclic AMP (EPAC)". The Journal of Biological Chemistry. 286 (49): 42655–69. doi: 10.1074/jbc.M111.277723 . PMC   3234915 . PMID   21873431.
  21. "Human Protein Altas". RAPGEF3. Retrieved 19 June 2015.
  22. Qiao J, Mei FC, Popov VL, Vergara LA, Cheng X (July 2002). "Cell cycle-dependent subcellular localization of exchange factor directly activated by cAMP". The Journal of Biological Chemistry. 277 (29): 26581–6. doi: 10.1074/jbc.M203571200 . PMID   12000763.
  23. Ponsioen B, Gloerich M, Ritsma L, Rehmann H, Bos JL, Jalink K (May 2009). "Direct spatial control of Epac1 by cyclic AMP". Molecular and Cellular Biology. 29 (10): 2521–31. doi:10.1128/MCB.01630-08. PMC   2682048 . PMID   19273589.
  24. Gloerich M, Ponsioen B, Vliem MJ, Zhang Z, Zhao J, Kooistra MR, et al. (November 2010). "Spatial regulation of cyclic AMP-Epac1 signaling in cell adhesion by ERM proteins". Molecular and Cellular Biology. 30 (22): 5421–31. doi:10.1128/MCB.00463-10. PMC   2976368 . PMID   20855527.
  25. Hochbaum D, Barila G, Ribeiro-Neto F, Altschuler DL (January 2011). "Radixin assembles cAMP effectors Epac and PKA into a functional cAMP compartment: role in cAMP-dependent cell proliferation". The Journal of Biological Chemistry. 286 (1): 859–66. doi: 10.1074/jbc.M110.163816 . PMC   3013045 . PMID   21047789.
  26. Dodge-Kafka KL, Soughayer J, Pare GC, Carlisle Michel JJ, Langeberg LK, Kapiloff MS, Scott JD (September 2005). "The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways". Nature. 437 (7058): 574–8. Bibcode:2005Natur.437..574D. doi:10.1038/nature03966. PMC   1636584 . PMID   16177794.
  27. Gloerich M, Bos JL (October 2011). "Regulating Rap small G-proteins in time and space". Trends in Cell Biology. 21 (10): 615–23. doi:10.1016/j.tcb.2011.07.001. PMID   21820312.
  28. Liu C, Takahashi M, Li Y, Dillon TJ, Kaech S, Stork PJ (August 2010). "The interaction of Epac1 and Ran promotes Rap1 activation at the nuclear envelope". Molecular and Cellular Biology. 30 (16): 3956–69. doi:10.1128/MCB.00242-10. PMC   2916442 . PMID   20547757.
  29. Mei FC, Cheng X (October 2005). "Interplay between exchange protein directly activated by cAMP (Epac) and microtubule cytoskeleton". Molecular BioSystems. 1 (4): 325–31. doi:10.1039/b511267b. PMID   16880999.
  30. Sehrawat S, Cullere X, Patel S, Italiano J, Mayadas TN (March 2008). "Role of Epac1, an exchange factor for Rap GTPases, in endothelial microtubule dynamics and barrier function". Molecular Biology of the Cell. 19 (3): 1261–70. doi:10.1091/mbc.E06-10-0972. PMC   2262967 . PMID   18172027.
  31. Sehrawat S, Ernandez T, Cullere X, Takahashi M, Ono Y, Komarova Y, Mayadas TN (January 2011). "AKAP9 regulation of microtubule dynamics promotes Epac1-induced endothelial barrier properties". Blood. 117 (2): 708–18. doi:10.1182/blood-2010-02-268870. PMC   3031489 . PMID   20952690.
  32. Métrich M, Lucas A, Gastineau M, Samuel JL, Heymes C, Morel E, Lezoualc'h F (April 2008). "Epac mediates beta-adrenergic receptor-induced cardiomyocyte hypertrophy". Circulation Research. 102 (8): 959–65. doi: 10.1161/CIRCRESAHA.107.164947 . PMID   18323524.
  33. Okumura S, Fujita T, Cai W, Jin M, Namekata I, Mototani Y, et al. (June 2014). "Epac1-dependent phospholamban phosphorylation mediates the cardiac response to stresses". The Journal of Clinical Investigation. 124 (6): 2785–801. doi:10.1172/JCI64784. PMC   4038559 . PMID   24892712.
  34. Fukuda M, Williams KW, Gautron L, Elmquist JK (March 2011). "Induction of leptin resistance by activation of cAMP-Epac signaling". Cell Metabolism. 13 (3): 331–9. doi:10.1016/j.cmet.2011.01.016. PMC   3747952 . PMID   21356522.
  35. Yan J, Mei FC, Cheng H, Lao DH, Hu Y, Wei J, et al. (March 2013). "Enhanced leptin sensitivity, reduced adiposity, and improved glucose homeostasis in mice lacking exchange protein directly activated by cyclic AMP isoform 1". Molecular and Cellular Biology. 33 (5): 918–26. doi:10.1128/MCB.01227-12. PMC   3623083 . PMID   23263987.
  36. Almahariq M, Mei FC, Cheng X (February 2014). "Cyclic AMP sensor EPAC proteins and energy homeostasis". Trends in Endocrinology and Metabolism. 25 (2): 60–71. doi:10.1016/j.tem.2013.10.004. PMC   3946731 . PMID   24231725.
  37. Eijkelkamp N, Linley JE, Torres JM, Bee L, Dickenson AH, Gringhuis M, et al. (2013). "A role for Piezo2 in EPAC1-dependent mechanical allodynia". Nature Communications. 4: 1682. Bibcode:2013NatCo...4.1682E. doi:10.1038/ncomms2673. PMC   3644070 . PMID   23575686.
  38. Wang H, Heijnen CJ, van Velthoven CT, Willemen HL, Ishikawa Y, Zhang X, et al. (December 2013). "Balancing GRK2 and EPAC1 levels prevents and relieves chronic pain". The Journal of Clinical Investigation. 123 (12): 5023–34. doi:10.1172/JCI66241. PMC   3859388 . PMID   24231349.
  39. 1 2 Gong B, Shelite T, Mei FC, Ha T, Hu Y, Xu G, et al. (November 2013). "Exchange protein directly activated by cAMP plays a critical role in bacterial invasion during fatal rickettsioses". Proceedings of the National Academy of Sciences of the United States of America. 110 (48): 19615–20. Bibcode:2013PNAS..11019615G. doi: 10.1073/pnas.1314400110 . PMC   3845138 . PMID   24218580.
  40. Tao X, Mei F, Agrawal A, Peters CJ, Ksiazek TG, Cheng X, Tseng CT (April 2014). "Blocking of exchange proteins directly activated by cAMP leads to reduced replication of Middle East respiratory syndrome coronavirus". Journal of Virology. 88 (7): 3902–10. doi:10.1128/JVI.03001-13. PMC   3993534 . PMID   24453361.
  41. 1 2 Almahariq M, Chao C, Mei FC, Hellmich MR, Patrikeev I, Motamedi M, Cheng X (February 2015). "Pharmacological inhibition and genetic knockdown of exchange protein directly activated by cAMP 1 reduce pancreatic cancer metastasis in vivo". Molecular Pharmacology. 87 (2): 142–9. doi:10.1124/mol.114.095158. PMC   4293446 . PMID   25385424.
  42. Onodera Y, Nam JM, Bissell MJ (January 2014). "Increased sugar uptake promotes oncogenesis via EPAC/RAP1 and O-GlcNAc pathways". The Journal of Clinical Investigation. 124 (1): 367–84. doi:10.1172/JCI63146. PMC   3871217 . PMID   24316969.
  43. 1 2 Nygaard G, Herfindal L, Asrud KS, Bjørnstad R, Kopperud RK, Oveland E, et al. (August 2017). "Epac1-deficient mice have bleeding phenotype and thrombocytes with decreased GPIbβ expression". Scientific Reports. 7 (1): 8725. Bibcode:2017NatSR...7.8725N. doi:10.1038/s41598-017-08975-y. PMC   5562764 . PMID   28821815.
  44. Enserink JM, Christensen AE, de Rooij J, van Triest M, Schwede F, Genieser HG, et al. (November 2002). "A novel Epac-specific cAMP analogue demonstrates independent regulation of Rap1 and ERK". Nature Cell Biology. 4 (11): 901–6. doi:10.1038/ncb874. PMID   12402047. S2CID   12593834.
  45. Christensen AE, Selheim F, de Rooij J, Dremier S, Schwede F, Dao KK, et al. (September 2003). "cAMP analog mapping of Epac1 and cAMP kinase. Discriminating analogs demonstrate that Epac and cAMP kinase act synergistically to promote PC-12 cell neurite extension". The Journal of Biological Chemistry. 278 (37): 35394–402. doi: 10.1074/jbc.M302179200 . PMID   12819211.
  46. Poppe H, Rybalkin SD, Rehmann H, Hinds TR, Tang XB, Christensen AE, et al. (April 2008). "Cyclic nucleotide analogs as probes of signaling pathways". Nature Methods. 5 (4): 277–8. doi:10.1038/nmeth0408-277. PMID   18376388. S2CID   32220309.
  47. Vliem MJ, Ponsioen B, Schwede F, Pannekoek WJ, Riedl J, Kooistra MR, et al. (September 2008). "8-pCPT-2'-O-Me-cAMP-AM: an improved Epac-selective cAMP analogue". ChemBioChem. 9 (13): 2052–4. doi:10.1002/cbic.200800216. PMID   18633951. S2CID   10708929.
  48. Holz GG, Chepurny OG, Schwede F (January 2008). "Epac-selective cAMP analogs: new tools with which to evaluate the signal transduction properties of cAMP-regulated guanine nucleotide exchange factors". Cellular Signalling. 20 (1): 10–20. doi:10.1016/j.cellsig.2007.07.009. PMC   2215344 . PMID   17716863.
  49. Schwede F, Bertinetti D, Langerijs CN, Hadders MA, Wienk H, Ellenbroek JH, et al. (January 2015). "Structure-guided design of selective Epac1 and Epac2 agonists". PLOS Biology. 13 (1): e1002038. doi: 10.1371/journal.pbio.1002038 . PMC   4300089 . PMID   25603503.
  50. Tsalkova T, Mei FC, Cheng X (2012). "A fluorescence-based high-throughput assay for the discovery of exchange protein directly activated by cyclic AMP (EPAC) antagonists". PLOS ONE. 7 (1): e30441. Bibcode:2012PLoSO...730441T. doi: 10.1371/journal.pone.0030441 . PMC   3262007 . PMID   22276201.
  51. 1 2 Tsalkova T, Mei FC, Li S, Chepurny OG, Leech CA, Liu T, et al. (November 2012). "Isoform-specific antagonists of exchange proteins directly activated by cAMP". Proceedings of the National Academy of Sciences of the United States of America. 109 (45): 18613–8. Bibcode:2012PNAS..10918613T. doi: 10.1073/pnas.1210209109 . PMC   3494926 . PMID   23091014.
  52. Almahariq M, Tsalkova T, Mei FC, Chen H, Zhou J, Sastry SK, et al. (January 2013). "A novel EPAC-specific inhibitor suppresses pancreatic cancer cell migration and invasion". Molecular Pharmacology. 83 (1): 122–8. doi:10.1124/mol.112.080689. PMC   3533471 . PMID   23066090.
  53. Courilleau D, Bisserier M, Jullian JC, Lucas A, Bouyssou P, Fischmeister R, et al. (December 2012). "Identification of a tetrahydroquinoline analog as a pharmacological inhibitor of the cAMP-binding protein Epac". The Journal of Biological Chemistry. 287 (53): 44192–202. doi: 10.1074/jbc.M112.422956 . PMC   3531735 . PMID   23139415.
  54. Zhu Y, Chen H, Boulton S, Mei F, Ye N, Melacini G, et al. (March 2015). "Biochemical and pharmacological characterizations of ESI-09 based EPAC inhibitors: defining the ESI-09 "therapeutic window"". Scientific Reports. 5: 9344. Bibcode:2015NatSR...5E9344Z. doi:10.1038/srep09344. PMC   4366844 . PMID   25791905.

Further reading