The rail vehicle resistance (or train resistance or simply resistance) is the total force necessary to maintain a rail vehicle in motion. This force depends on a number of variables and is of crucial importance for the energy efficiency of the vehicle as it is proportional to the locomotive power consumption. [1] For the speed of the vehicle to remain the same, the locomotive must express the proper tractive force, otherwise the speed of the vehicle will change until this condition is met. [2]
A number of experimental measurements [3] [4] [5] of the train resistance have shown that this force can be expressed as a quadratic equation with respect to speed as shown below:
Where is the resistance, is the speed of the rail vehicle and , , and are experimentally determined coefficients. The most well-known of these relations was proposed by Davis W. J. Jr. [3] and is named after him. The Davis equation contains mechanical and aerodynamic contributions to resistance. The first formulation assumes that there is no wind, however, formulations that do not make this assumptions exist: [3]
,
where is the speed of the air with respect to the vehicle while and are experimental coefficients that separately account for mechanical and aerodynamic (viscous) phenomena respectively.
The coefficients for these equations are determined with experiments by measuring the tractive effort from the locomotive at different constant speeds or with a coasting experiments (the rail vehicle is set in motion at a certain speed and then the traction is disengaged, causing the vehicle to stop due to resistance). [6]
Most methods for determining these coefficients do not consider the effect lateral forces on the vehicle. Lateral forces can be caused by the centripetal acceleration of the vehicle following the curving of the tracks, by lateral tilt of the rails, or by aerodynamic forces if crosswind is present. [7] These forces affect the resistance by pushing the vehicle laterally against the rail causing sliding friction between the wheels and the rails. [8] In case of crosswind, the resistance is also affected by the change in the aerodynamic contribution as a consequence of changes in the flow.
The first term in the Davis equation () accounts for the contributions to the resistance that are independent from speed. Track gradient and acceleration are two of the contributing phenomena to this term. These are not dissipative processes and thus the additional work required from the locomotive to overcome the increased resistance is converted to mechanical energy (potential energy for the gradient and kinetic energy for the acceleration). The consequence of this is that these phenomena may, in different conditions, result in positive or negative contributions to the resistance. [9] For example, a train decelerating on horizontal tracks will experience reduced resistance than if it where travelling at constant speed. Other contributions to this term are dissipative, for example bearing friction and rolling friction due to the local deformation of the rail at the point of contact with the wheels, these latter quantities can never reduce the train resistance.
The term is constant with respect to vehicle speed but various empirical relations have been proposed to predict its value. It is the general consensus that the term is directly related to the mass of the vehicle [6] with some observing an effect of the number axles as well as the axle loads. [10]
The coefficient in the second term of the Davis equation () relates to the terms linearly dependent on speed and is sometimes omitted because it is negligible compared to the other terms. [11] This term accounts for mass-related, speed-dependent, mechanical contributions to the resistance and for the momentum of the intake air for cooling and HVAC. [12]
Similarly to , empirical formulas have been proposed to evaluate the term , and again a mass dependence is present in all major methods for determining the rail vehicle resistance coefficients, with some also observing a dependence from number of trailers and locomotives [6] or a dependence from length. [10]
The coefficient in the third term of the Davis equation () accounts for the aerodynamic drag acting on the vehicle, it is explained by the fact that as the train moves through the air, it sets some of the air surrounding it in motion (this is called slipstream). To maintain constant speed, the continuous transfer of momentum to the air needs to be compensated by an additional tractive force by the locomotive, this is accounted for by this term. As train speed increases, the aerodynamic drag becomes the dominant contribution to the resistance, for high-speed trains above 250 km/h [13] and for freight trains above 115 km/h [14] it accounts for 75-80% of the resistance.
This term is highly dependent on the geometry of the vehicle, and therefore it will be much lower for the streamlined high-speed passenger train than for freight trains, which behave like bluff bodies and produce much larger and more turbulent slipstreams at the same vehicle speed, [15] leading to increased momentum transfer to the surrounding air.
Few general considerations can be made about the aerodynamic contribution to rail vehicle resistance because the aerodynamic drag heavily depends on both flow conditions and the geometry of the vehicle. However, the drag is higher in crosswind conditions than in still air, and for small angles the relation between drag coefficient and yaw angle is approximately linear. [16]
In the years, empirical relations have been proposed for estimating the values of the coefficients for the Davis equation, these however also rely on more coefficients to determine experimentally. Below are the relations proposed by Armostrong and Swift: [6]
Where and are respectively the total mass of the trailer cars and the total mess of the locomotives expressed in tons, , , and are respectively the number of trailer cars, the number of locomotives, the number of bogies and the number of pantographs, is the total power expressed in kW, and are respectively the head/tail drag coefficients and the bogies drag coefficients, is the frontal cross-sectional area in square metres, is the perimeter, is the length and is the intervehicle gap (all lengths expressed in meters). The coefficients , and are expressed in N , Ns/m and Ns2/m2.
Aerodynamics is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics, and is an important domain of study in aeronautics. The term aerodynamics is often used synonymously with gas dynamics, the difference being that "gas dynamics" applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis for the development of heavier-than-air flight and a number of other technologies. Recent work in aerodynamics has focused on issues related to compressible flow, turbulence, and boundary layers and has become increasingly computational in nature.
In thermodynamics and fluid mechanics, the compressibility is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure change. In its simple form, the compressibility may be expressed as
In fluid dynamics, the drag coefficient is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area.
Flight dynamics is the science of air vehicle orientation and control in three dimensions. The three critical flight dynamics parameters are the angles of rotation in three dimensions about the vehicle's center of gravity (cg), known as pitch, roll and yaw. These are collectively known as aircraft attitude, often principally relative to the atmospheric frame in normal flight, but also relative to terrain during takeoff or landing, or when operating at low elevation. The concept of attitude is not specific to fixed-wing aircraft, but also extends to rotary aircraft such as helicopters, and dirigibles, where the flight dynamics involved in establishing and controlling attitude are entirely different.
In aeronautics, the aspect ratio of a wing is the ratio of its span to its mean chord. It is equal to the square of the wingspan divided by the wing area. Thus, a long, narrow wing has a high aspect ratio, whereas a short, wide wing has a low aspect ratio.
An airfoil or aerofoil is a streamlined body that is capable of generating significantly more lift than drag. Wings, sails and propeller blades are examples of airfoils. Foils of similar function designed with water as the working fluid are called hydrofoils.
In aerodynamics, the lift-to-drag ratio is the lift generated by an aerodynamic body such as an aerofoil or aircraft, divided by the aerodynamic drag caused by moving through air. It describes the aerodynamic efficiency under given flight conditions. The L/D ratio for any given body will vary according to these flight conditions.
Lift-induced drag, induced drag, vortex drag, or sometimes drag due to lift, in aerodynamics, is an aerodynamic drag force that occurs whenever a moving object redirects the airflow coming at it. This drag force occurs in airplanes due to wings or a lifting body redirecting air to cause lift and also in cars with airfoil wings that redirect air to cause a downforce. It is symbolized as , and the lift-induced drag coefficient as .
Parasitic drag, also known as profile drag, is a type of aerodynamic drag that acts on any object when the object is moving through a fluid. Parasitic drag is a combination of form drag and skin friction drag. It affects all objects regardless of whether they are capable of generating lift.
In railway engineering, the term tractive effort describes the pulling or pushing capability of a locomotive. The published tractive force value for any vehicle may be theoretical—that is, calculated from known or implied mechanical properties—or obtained via testing under controlled conditions. The discussion herein covers the term's usage in mechanical applications in which the final stage of the power transmission system is one or more wheels in frictional contact with a railroad track.
Rolling resistance, sometimes called rolling friction or rolling drag, is the force resisting the motion when a body rolls on a surface. It is mainly caused by non-elastic effects; that is, not all the energy needed for deformation of the wheel, roadbed, etc., is recovered when the pressure is removed. Two forms of this are hysteresis losses, and permanent (plastic) deformation of the object or the surface. Note that the slippage between the wheel and the surface also results in energy dissipation. Although some researchers have included this term in rolling resistance, some suggest that this dissipation term should be treated separately from rolling resistance because it is due to the applied torque to the wheel and the resultant slip between the wheel and ground, which is called slip loss or slip resistance. In addition, only the so-called slip resistance involves friction, therefore the name "rolling friction" is to an extent a misnomer.
An adhesion railway relies on adhesion traction to move the train, and is the most widespread and common type of railway in the world. Adhesion traction is the friction between the drive wheels and the steel rail. Since the vast majority of railways are adhesion railways, the term adhesion railway is used only when it is necessary to distinguish adhesion railways from railways moved by other means, such as by a stationary engine pulling on a cable attached to the cars or by a pinion meshing with a rack.
In fluid dynamics, drag, sometimes referred to as fluid resistance, is a force acting opposite to the relative motion of any object, moving with respect to a surrounding fluid. This can exist between two fluid layers, two solid surfaces, or between a fluid and solid surface. Drag forces tend to decrease fluid velocity relative to the solid object in the fluid's path.
Bicycle performance is measurable performance such as energy efficiency that affect how effective a bicycle is. Bicycles are extraordinarily efficient machines; in terms of the amount of energy a person must expend to travel a given distance, cycling is calculated to be the most efficient self-powered means of transportation.
In fluid dynamics, dynamic pressure is the quantity defined by:
The drag coefficient is a common measure in automotive design as it pertains to aerodynamics. Drag is a force that acts parallel to and in the same direction as the airflow. The drag coefficient of an automobile measures the way the automobile passes through the surrounding air. When automobile companies design a new vehicle they take into consideration the automobile drag coefficient in addition to the other performance characteristics. Aerodynamic drag increases with the square of speed; therefore it becomes critically important at higher speeds. Reducing the drag coefficient in an automobile improves the performance of the vehicle as it pertains to speed and fuel efficiency. There are many different ways to reduce the drag of a vehicle. A common way to measure the drag of the vehicle is through the drag area.
The Vortex lattice method, (VLM), is a numerical method used in computational fluid dynamics, mainly in the early stages of aircraft design and in aerodynamic education at university level. The VLM models the lifting surfaces, such as a wing, of an aircraft as an infinitely thin sheet of discrete vortices to compute lift and induced drag. The influence of the thickness and viscosity is neglected.
The primary application of wind turbines is to generate energy using the wind. Hence, the aerodynamics is a very important aspect of wind turbines. Like most machines, wind turbines come in many different types, all of them based on different energy extraction concepts.
Forces on sails result from movement of air that interacts with sails and gives them motive power for sailing craft, including sailing ships, sailboats, windsurfers, ice boats, and sail-powered land vehicles. Similar principles in a rotating frame of reference apply to windmill sails and wind turbine blades, which are also wind-driven. They are differentiated from forces on wings, and propeller blades, the actions of which are not adjusted to the wind. Kites also power certain sailing craft, but do not employ a mast to support the airfoil and are beyond the scope of this article.
Aerodynamics is a branch of dynamics concerned with the study of the motion of air. It is a sub-field of fluid and gas dynamics, and the term "aerodynamics" is often used when referring to fluid dynamics