Ramalina menziesii

Last updated

Ramalina menziesii
Ramalina menziesii by Jessica Rosenkrantz.jpg
Status TNC G4.svg
Apparently Secure  (NatureServe) [1]
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Lecanoromycetes
Order: Lecanorales
Family: Ramalinaceae
Genus: Ramalina
Species:
R. menziesii
Binomial name
Ramalina menziesii
Taylor (1847)
Synonyms [2]
  • Endocarpon reticulatum Ach. ex Steud. (1824)
  • Lichen reticulatus Nöhden (1801)
  • Lichen reticulatus Zoega (1775)
  • Ramalina reticulata Kremp. (1869)
  • Roccella reticulataKremp. (1876)

Ramalina menziesii, the lace lichen or fishnet, is a pale yellowish-green to grayish-green fruticose lichen. It grows up to a meter long, hanging from bark and twigs in a distinctive net-like or lace-like pattern that is unlike any other lichen in North America. [3] It becomes a deeper green when wet. [3] Apothecia are lecanorine. [3] Lace lichen is an important food source for deer in the Coast Range of California, and a source of nest material for birds. [3] It is highly variable in its growth form, with branches sometimes so slender as to appear like strands, sometimes tiny, and sometimes large with broadly flattened branches. [3]

Contents

After years of effort, the California Lichen Society was able to convince the state legislature to recognize the lichen as the state lichen of California, the first lichen so honored. [4] [5]

Taxonomy

In 1775, the species was given its first Linnean binomial name of Lichen retiformis by Archibald Menzies. It was also referred to as Lichen reticulatis by Nohden in 1801. [6] Thomas Taylor then incorporated the taxon into the genus Ramalina and described it in the London Journal of Botany in 1847 as Ramalina menziesii. [6] Vernacular names used for the species include "lace lichen" and "fishnet". [7]

Description

Ramalina menziesii is a fruticose epiphytic lichen found on coastal regions of North America that produce a large and conspicuous thallus. [8] Expansion of its perforated tissue from the thallus apex produces its net-like morphology. [9] This morphology ranges from thick nets in sunny regions to thin filaments in foggy regions. [10] Studies have suggested that this morphological variation is a result of both genetic differences between populations, as well as phenotypic plasticity within the species. [11] [10]

Lichen spot tests on the cortex are K−, C−, P− and KC+ (dark yellow). [3]

In Golden Gate Park, San Francisco Ramalina menziesii 106175427.jpg
In Golden Gate Park, San Francisco
Lace lichen in Woodside, California Ramalina menziesii 162611469.jpg
Lace lichen in Woodside, California

Distribution and habitat

Ramalina menziesii is found from the Baja California of Mexico to the temperate rainforests of Alaska, with six distinct ecoregions. [12] Throughout their distribution, the occupied habitat differs in relation to the distance from the coast. In Baja California, lace lichen is most common on shrubs in the coastal fog deserts and on cacti, shrubs and trees in the inland chaparral habitats. [13] In coastal California, lace lichen is found in habitats dominated by coastal live oak, tan oak, California laurel, red alder, and willow. In the Californian inland, the habitats are dominated by oak savannas of valley oak, blue oak, and coastal live oak. [13] The northern and southern Californian habitats are geographically separated from the coastal range. As you move towards the Pacific Northwest, lace lichen is found in temperate mixed coniferous forests of Sitka spruce, western hemlock, and some broad-leafed species. [14] Moving inland in their northern distribution, lace lichen quickly disappear. The range of the lichen continues north along the Pacific Coast of British Columbia, extending to Alaska. [7]

In the deciduous blue oak (Quercus douglasii) woodlands of central coastal California, Ramalina menziesii has an important role in the annual turnover of biomass. The standing biomass of this and other epiphytic lichens was determined to be 515 grams per tree, equivalent to 706 kilograms per hectare; of this, 94% is R. menziesii. Despite this area being much drier than those in other similar studies, R. menziesii was shown to contribute as much to biomass and nutrient turnover as other epiphytic lichens from wetter locales. [10]

A study on Ramalina menziesii across its range from Baja California del Norte to the Queen Charlotte Islands revealed patterns of morphological variation influenced by environmental factors. Key findings include a correlation between the number of perforations in the lichen's net buds and both proximity to the coast and latitude, with coastal samples having fewer perforations and a decrease in perforations with increasing latitude, particularly noticeable north of central Oregon where samples are exclusively coastal. Additionally, the study found significant relationships between morphological variations and environmental factors such as NaCl concentration and annual temperature variation, although the distribution of different forms of R. menziesii and patterns of annual precipitation showed some alignment, the presence and form of R. menziesii did not correlate with the distribution of eight tree species that serve as its substrate. [15]

Photobiont

Lichen are a great example of a symbiotic interaction between a fungal body and an algal photobiont. The photobiont provides energy to the organism via photosynthesis, while the fungal body provides a habitat. 94% of the photobiont lineages of Ramalina menziesii are associated with Trebouxia decolorans, while the remainder are Trebouxia jamesii . [13] While Ramalina menziesii only associates with one algal species, it has been found in association with six other fungal species. [16]

Trebouxia decolorans shows significant genetic structure depending on the ecoregion, phorophyte species, and climate. [13] This structure was likely shaped by geographic barriers or differences in climate and habitat. Within each ecoregion, specialization of T. decolorans to its specific phorophyte species was found. [17] This allows for local adaptation and has an impact on the genetic structure of the population.

Bioindicators

Lichen have long been used as bioindicators for atmospheric pollution because they derive much of their resources from the air. Many species are also sensitive to environmental change, making them accurate warning signs for pollution. [18] A study of archived Ramalina menziesii specimens showed a history of lead contamination in California. Lead concentrations in lace lichen peaked in 1976 at 880 μg/g due to leaded gasoline emissions and have since decreased to 0.2–4.7 μg/g. [19]

In recent years, Ramalina menziesii has bioaccumulated of monomethylmercury (MMHg) from coastal marine atmospheric fog. High concentrations found in lace lichen are transmitted to the deer that consume them, and later to the apex predators that consume the deer—a process called biomagnification. Although fog-borne MMHg only accounts for a small percentage of atmospheric deposition, it may have a disproportionate impact leading to toxicological effects on Puma concolor in coastal California. [20]

Historical uses

Ramalina menziesii was first documented for its use by indigenous tribes of California. The Kawaiisu people reportedly used it for its magical properties. It would be placed in water to bring rain or placed in fire to repel thunder or lightning. The Kashaya Pomo people in Northern California used it as a sanitary material. [6]

Related Research Articles

<span class="mw-page-title-main">Lichen</span> Symbiosis of fungi with algae or cyanobacteria

A lichen is a composite organism that arises from algae or cyanobacteria living among filaments of multiple fungi species in a mutualistic relationship. Lichens are important actors in nutrient cycling and act as producers which many higher trophic feeders feed on, such as reindeer, gastropods, nematodes, mites, and springtails. Lichens have properties different from those of their component organisms. They come in many colors, sizes, and forms and are sometimes plant-like, but are not plants. They may have tiny, leafless branches (fruticose); flat leaf-like structures (foliose); grow crust-like, adhering tightly to a surface (substrate) like a thick coat of paint (crustose); have a powder-like appearance (leprose); or other growth forms.

<i>Xanthoria parietina</i> Species of lichen

Xanthoria parietina is a foliose lichen in the family Teloschistaceae. It has wide distribution, and many common names such as common orange lichen, yellow scale, maritime sunburst lichen and shore lichen. It can be found near the shore on rocks or walls, and also on inland rocks, walls, or tree bark. It was chosen as a model organism for genomic sequencing by the US Department of Energy Joint Genome Institute (JGI).

<i>Erioderma pedicellatum</i> Species of lichen

Erioderma pedicellatum is a medium-sized, foliose lichen in the family Pannariaceae, commonly called the boreal felt lichen. It grows on trees in damp boreal forests along the Atlantic coast in Canada, as well as in southcentral Alaska and in the Kamchatka Peninsula.

<i>Trebouxia</i> Genus of algae

Trebouxia is a unicellular green alga. It is a photosynthetic organism that can exist in almost all habitats found in polar, tropical, and temperate regions. It can either exist in a symbiotic relationship with fungi in the form of lichen or it can survive independently as a free-living organism alone or in colonies. Trebouxia is the most common photobiont in extant lichens. It is a primary producer of marine, freshwater and terrestrial ecosystems. It uses carotenoids and chlorophyll a and b to harvest energy from the sun and provide nutrients to various animals and insects.

<i>Lobaria pulmonaria</i> Species of lichen

Lobaria pulmonaria is a large epiphytic lichen consisting of an ascomycete fungus and a green algal partner living together in a symbiotic relationship with a cyanobacterium—a symbiosis involving members of three kingdoms of organisms. Commonly known by various names like tree lungwort, lung lichen, lung moss, lungwort lichen, oak lungs or oak lungwort, it is sensitive to air pollution and is also harmed by habitat loss and changes in forestry practices. Its population has declined across Europe and L. pulmonaria is considered endangered in many lowland areas. The species has a history of use in herbal medicines, and recent research has corroborated some medicinal properties of lichen extracts.

<i>Buellia</i> Genus of lichens

Buellia is a genus of mostly lichen-forming fungi in the family Caliciaceae. The fungi are usually part of a crustose lichen. In this case, the lichen species is given the same name as the fungus. But members may also grow as parasites on lichens (lichenicolous). The algae in the lichen is always a member of the genus Trebouxia.

<i>Punctelia</i> Genus of foliose lichens

Punctelia is a genus of foliose lichens belonging to the large family Parmeliaceae. The genus, which contains about 50 species, was segregated from genus Parmelia in 1982. Characteristics that define Punctelia include the presence of hook-like to thread-like conidia, simple rhizines, and point-like pseudocyphellae. It is this last feature that is alluded to in the vernacular names speckled shield lichens or speckleback lichens.

<i>Niebla</i> (lichen) Genus of lichen

Niebla is a genus of yellow-green fruticose lichens that grow on rocks, trees, and shrubs within the fog zone of coastal North America, or more narrowly defined to occur on rocks and soil along the Pacific Coast from Mendocino County in California south to Baja California Sur.

<span class="mw-page-title-main">Cephalodium</span> Morphological structure found in some lichens

A cephalodium (pl. cephalodia) is a small gall-like structure found in some lichens. They occur only lichens which contain both cyanobacterial and green algal partners. Cephalodia can occur within the tissues of the lichen, or on its upper or lower surface. Lichens with cephalodia can fix nitrogen, and may be an important contributor of nitrogen to the ecosystem.

<i>Peltigera membranacea</i> Species of lichen

Peltigera membranacea is a species of lichenized fungus in the family Peltigeraceae. It has a foliose growth pattern, with what appear to be veins in the leaf-like parts, but these do not have a vascular function. The apothecia are erect, numerous, and often a bright brown-orange in colour. Some simple sequence repeat markers have been developed for both the fungal partner (mycobiont) of Peltigera membranacea and its Nostoc photobiont partner; these allow for both population genetic studies and an alternative means of identifying between P. membranacea and its lookalikes.

<span class="mw-page-title-main">Lichen growth forms</span> Gross morphological classification

Lichens are symbiotic organisms made up of multiple species: a fungus, one or more photobionts and sometimes a yeast. They are regularly grouped by their external appearance – a characteristic known as their growth form. This form, which is based on the appearance of vegetative part of the lichen, varies depending on the species and the environmental conditions it faces. Those who study lichens (lichenologists) have described a dozen of these forms: areolate, byssoid, calicioid, cladoniform, crustose, filamentous, foliose, fruticose, gelatinous, leprose, placoidioid and squamulose. Traditionally, crustose (flat), foliose (leafy) and fruticose (shrubby) are considered to be the three main forms. In addition to these more formalised, traditional growth types, there are a handful of informal types named for their resemblance to the lichens of specific genera. These include alectorioid, catapyrenioid, cetrarioid, hypogymnioid, parmelioid and usneoid.

<span class="mw-page-title-main">Lichen morphology</span>

Lichen morphology describes the external appearance and structures of a lichen. These can vary considerably from species to species. Lichen growth forms are used to group lichens by "vegetative" thallus types, and forms of "non-vegetative" reproductive parts. Some lichen thalli have the aspect of leaves ; others cover the substrate like a crust, others such as the genus Ramalina adopt shrubby forms, and there are gelatinous lichens such as the genus Collema.

Lichen anatomy and physiology is very different from the anatomy and physiology of the fungus and/or algae and/or cyanobacteria that make up the lichen when growing apart from the lichen, either naturally, or in culture. The fungal partner is called the mycobiont. The photosynthetic partner, algae or cyanobacteria, is called the photobiont. The body of a lichens that does not contain reproductive parts of the fungus is called the thallus. The thallus is different from those of either the fungus or alga growing separately. The fungus surrounds the algal cells, often enclosing them within complex fungal tissues unique to lichen associations. In many species the fungus penetrates the algal cell wall, forming penetration pegs or haustoria similar to those produced by pathogenic fungi. Lichens are capable of surviving extremely low levels of water content (poikilohydric). However, the re-configuration of membranes following a period of dehydration requires several minutes at least.

<span class="mw-page-title-main">Symbiosis in lichens</span>

Symbiosis in lichens is the mutually beneficial symbiotic relationship of green algae and/or blue-green algae (cyanobacteria) living among filaments of a fungus, forming lichen.

<i>Parmelia barrenoae</i> Species of lichen

Parmelia barrenoae is a species of foliose lichen in the large family Parmeliaceae. It was formally described as a new species in 2005. Before this, it was lumped together as one of several lichens in the Parmelia sulcata group—a species complex of genetically distinct lookalikes. Parmelia barrenoae is widely distributed, occurring in Europe, western North America, Africa, and Asia.

<i>Ramalina americana</i> Species of lichen

Ramalina americana, commonly known as the sinewed ramalina, is a pale green fruticose lichen that is found across the Northern US Midwest, extending into Southern Canada and the Eastern Seaboard. It is characterized morphologically by the presence of pseudocyphellae, straight spores, and its unique chemical diversity.

Trebouxia decolorans is a widespread and common symbiotic species of green alga that is found in association with different species of lichen-forming fungi. Some lichens in which it is the photobiont partner are Xanthoria parietina and Anaptychia ciliaris.

<i>Anaptychia ciliaris</i> Species of lichen

Anaptychia ciliaris, commonly known as the great ciliated lichen or eagle's claws, is a species of fruticose lichen in the family Physciaceae. It is predominantly found in Northern Europe, with its range extending to European Russia, the Caucasus, Central and Southern Europe, the Canary Islands, and some parts of Asia. First mentioned in botanical literature by Italian botanist Fabio Colonna in 1606, the species was formally described by Carl Linnaeus in 1753, who highlighted its unique physical characteristics such as its grey colour, its unusual leafy form with linear fringe-like segments, and the presence of hair-like structures. This lichen is adaptable in its choice of substrates, mostly growing on tree barks, and less commonly on rocks.

Trebouxia arboricola is a symbiotic species of green alga in the family Trebouxiaceae. Described as new to science in 1924, it is usually found in association with different species of lichen-forming fungi and has a broad global distribution.

<i>Ramalina celastri</i> Species of lichen

Ramalina celastri is a species of corticolous and lignicolous, fruticose lichen in the family Ramalinaceae. It is a widespread species with a pantropical distribution.

References

  1. McDonald, L., 2000
  2. "Synonymy: Ramalina menziesii Taylor, London J. Bot. 6: 189 (1847)". Species Fungorum . Retrieved May 6, 2022.
  3. 1 2 3 4 5 6 Sharnoff, Stephen (2014). A Field Guide to California Lichens. New Haven: Yale University Press. pp. 191–192. ISBN   978-0-300-19500-2.
  4. "California's State Lichen: Lace lichen (Ramalina menziesii)". The California Lichen Society. Retrieved September 13, 2021.
  5. Gumbiner, Daniel (May 19, 2016), "The Ex-Anarchist Construction Worker Who Became a World-Renowned Scientist", The Atlantic, retrieved September 13, 2021
  6. 1 2 3 Villella, John (2016). "A look at how lace lichen came to be known as Ramalina menziesii and how it grows its nets" (PDF). Bulletin of the California Lichen Society. 23: 1–5.
  7. 1 2 Brodo, Irwin M.; Sharnoff, Sylvia Duran; Sharnoff, Stephen (2001). Lichens of North America. Yale University Press. pp. 625–626. ISBN   978-0300082494.
  8. Sanders, William B. (1992). "Comparative in situ studies of thallus net development in morphologically distinct populations of the lichen Ramalina menziesii". The Bryologist. 95 (2): 192–204. doi:10.2307/3243435. JSTOR   3243435.
  9. Sanders, William B.; Ascaso, Carmen (1995). "Reiterative production and deformation of cell walls in expanding thallus nets of the lichen Ramalina menziesii (Lecanorales, Ascomycetes)". American Journal of Botany. 82 (11): 1358–1366. doi:10.1002/j.1537-2197.1995.tb12672.x.
  10. 1 2 3 Boucher, V.L.; Nash, T.H. III (1990). "Growth patterns in Ramalina menziesii in California: coastal vs. inland populations". The Bryologist. 93 (3): 295–302. doi:10.2307/3243516. JSTOR   3243516.
  11. Larson, Douglas W. (1983). "Morphological variation and development in Ramalina menziesii Tayl". American Journal of Botany. 70 (5): 668–681. doi:10.1002/j.1537-2197.1983.tb12446.x.
  12. Knudsen, Kerry (2016). "Some results of Dr. Silke Werth's study of lace lichen" (PDF). Bulletin of the California Lichen Society. 23: 6–8.
  13. 1 2 3 4 Werth, Silke; Sork, Victoria L. (2014). "Ecological specialization in Trebouxia (Trebouxiophyceae) photobionts of Ramalina menziesii (Ramalinaceae) across six range‐covering ecoregions of western North America". American Journal of Botany. 101 (7): 1127–1140. doi: 10.3732/ajb.1400025 . PMID   25016008.
  14. Werth, Silke; Sork, Victoria L. (2008). "Local genetic structure in a North American epiphytic lichen, Ramalina menziesii (Ramalinaceae)". American Journal of Botany. 95 (5): 568–576. doi: 10.3732/ajb.2007024 . PMID   21632383.
  15. Larson, D.W.; Matthes-Sears, U.; Nash III, T.H. (1985). "The ecology of Ramalina menziesii. I. Geographical variation in form". Canadian Journal of Botany. 63 (11): 2062–2068. doi:10.1139/b85-289.
  16. Werth, Silke (2012). "Fungal-algal interactions in Ramalina menziesii and its associated epiphytic lichen community". The Lichenologist. 44 (4): 543–560. doi:10.1017/S0024282912000138.
  17. Werth, Silke; Sork, Victoria L. (2010). "Identity and genetic structure of the photobiont of the epiphytic lichen Ramalina menziesii on three oak species in southern California". American Journal of Botany. 97 (5): 821–830. doi:10.3732/ajb.0900276. PMID   21622447.
  18. Jovan, Sarah (2008). Lichen bioindication of biodiversity, air quality, and climate: baseline results from monitoring in Washington, Oregon, and California. Gen. Tech. Rep. PNW-GTR-737 (Report). Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. doi:10.2737/pnw-gtr-737. hdl: 2027/umn.31951d02981220h .
  19. Flegal, A. Russell; Gallon, Céline; Hibdon, Sharon; Kuspa, Zeka E.; Laporte, Léo F. (July 15, 2010). "Declining—but persistent—atmospheric contamination in central California from the resuspension of historic leaded gasoline emissions as recorded in the lace lichen (Ramalina menziesii Taylor) from 1892 to 2006". Environmental Science & Technology. 44 (14): 5613–5618. doi:10.1021/es100246e. PMID   20527766.
  20. Weiss-Penzias, Peter S.; Bank, Michael S.; Clifford, Deana L.; Torregrosa, Alicia; Zheng, Belle; Lin, Wendy; Wilmers, Christopher C. (2019). "Marine fog inputs appear to increase methylmercury bioaccumulation in a coastal terrestrial food web". Scientific Reports. 9 (1): e17611. doi:10.1038/s41598-019-54056-7. PMC   6879473 . PMID   31772229.

See also