Randolph diagram

Last updated
Randolph diagram that represents the logical statement
P
[?]
Q
{\displaystyle P\lor Q}
(disjunction). Randolph-diagram-disjunction.svg
Randolph diagram that represents the logical statement (disjunction).

A Randolph diagram (R-diagram) is a simple way to visualize logical expressions and combinations of sets. Randolph diagrams were created by mathematician John F. Randolph in 1965, during his tenure at the University of Arkansas.

Contents

Overview

Randolph diagrams can be interpreted most easily by defining each line as belonging to or relating to one logical statement or set. Any dot above the line indicates truth or inclusion and below the line indicates falsity or exclusion. Using this system, one can represent any combination of sets or logical statements using intersecting lines.

Though Venn diagrams are more commonly used to represent combinations of sets, Randolph diagrams have the advantage of being able to cleanly represent combinations of more than 3 sets. Venn diagrams require either extension into higher spatial dimensions or the use of more complicated shapes while Randolph diagrams evenly subdivide for every additional set. [1] Here is a comparison between a Venn diagram and R-diagram for 5 sets of logical statements:

Venn5.svg Randolph-diagram-n5.svg

History

In his introductory paper on the subject, Cross-Examining Propositional Calculus and Set Operations, [2] Randolph mentions that the first use of crosses and dots to represent logical relationships was introduced by W. S. McCulloch, a neurophysiologist and Randolph's contemporary. Randolph modified McCulloch's system with a new way of representing combinations and relationships of more than two logical statements or sets, namely subdividing each section of the R-diagram with a new diagonal line for each new element introduced. Randolph's paper suggests that his original notion was to use R-diagrams to represent logical relationships, and then expanded the idea to be applied to set theory as well. Throughout the paper, R-diagrams are used in conjunction with normal logical and set binary operation symbols.

Application to logic theory

When applying R-diagrams to logic theory, logical statements p, q, and r can each become a line or multiple lines to visually display the validity of each element in a larger statement. Generally, p is thought to be represented by an upward sloping line (/) while q is represented by a downward sloping line (\). A dot in the diagram above a slanting line indicates truth for that statement; likewise, a dot below indicates falsity. The R-diagrams for p and q are shown below, respectively:

R-diagram-p.svg Randolph-diagram-q.svg

For more than two statements, the four spaces formed by the intersection of lines p and q must be subdivided into more lines. In the case of r, a single upward sloping line (/) is added in each of the four spaces. The R-diagram for r is shown below:

R-diagram-r.svg

This method can be extended for any number of truth values:

Randolph-diagram-subdivisions.svg , etc.

R-diagrams are primarily used to represent logical expressions. Given a logical proposition, R-diagrams are able to display the outcome of every possible true/false variation of each element, creating an alternative way to represent a truth table.

Truth table
#pqr
1TTT
2TTF
3TFT
4TFF
5FTT
6FTF
7FFT
8FFF

Randolph-diagram-numbers.svg Randolph-diagram-truthvalues.svg

All the basic logical operations, or connectives, can be expressed using an R-diagrams as a more easily readable alternative to a truth table, as is shown in the table below:

Basic logical operations
NameSymbolsR-diagramTruth table
Negation (not) ¬ , ~ Randolph-diagram-negation.svg
p ¬p
TF
FT
Conjunction (and) & , ∧ Randolph-diagram-conjunction.svg
p q p ∧ q
TTT
TFF
FTF
FFF
Disjunction (or) Randolph-diagram-disjunction.svg
p q p ∨ q
TTT
TFT
FTT
FFF
Material implication (if...then)  , , Randolph-diagram-implication.svg
p q p q
TTT
TFF
FTT
FFT
Biconditional (if and only if, xnor) , , Randolph-diagram-bicondition.svg
p q p q
TTT
TFF
FTF
FFT

Simplifying logical expressions

R-diagrams can be used to easily simplify complicated logical expressions, using a step-by-step process. Using order of operations, logical operators are applied to R-diagrams in the proper sequence. Finally, the result is an R-diagram that can be converted back into a simpler logical expression.

For example, take the following expression:

It can be simplified using R-diagrams as follows:

Randolph-diagram-q.svg R-diagram-p.svg Randolph-diagram-negation.svg Randolph-diagram-q.svg

Randolph-diagram-bicondition.svg Randolph-diagram-qminusp.svg

Randolph-diagram-implication.svg

which is equal to:

Proving logical arguments

Similarly, R-diagrams can be used to prove or disprove logical arguments. Take, for instance, the well known argument modus ponens, also known as implication elimination:

This can be converted into a tautological logical expression,

which can then be simplified using R-diagrams:

R-diagram-p.svg Randolph-diagram-q.svg R-diagram-p.svg Randolph-diagram-q.svg

Randolph-diagram-implication.svg R-diagram-p.svg Randolph-diagram-q.svg

Randolph-diagram-conjunction.svg Randolph-diagram-q.svg

Randolph-diagram-tautology.svg

The result is an R-diagram in which every space has a dot. This means the argument is a tautology; it is true in all cases. An R-diagram in which no space has a dot is a contradiction, a statement that is never true.

Application to set theory

R-diagrams are also used in set theory, as an alternative to Venn diagrams. In set theory, each line represents a set instead of a logical statement; A replaces p and B replaces q. When used for sets, a dot above the line represents inclusion, where a dot below represents exclusion. As in logic, basic set operations can be represented visually using R-diagrams:

Basic Set Operations
NameNotationR-Diagram
Union Randolph-diagram-disjunction.svg
Intersection Randolph-diagram-conjunction.svg
Absolute Complement Randolph-diagram-negation.svg
Relative Complement (set difference) Randolph-diagram-diff.svg
Symmetric Difference Randolph-diagram-symdiff.svg

R-diagrams illustrate the equivalence between the set theoretical and logical concepts: intersection in set theory is equivalent to conjunction in logic, and set theory's union is equivalent to the logical disjunction.

Related Research Articles

<span class="mw-page-title-main">Associative property</span> Property of a mathematical operation

In mathematics, the associative property is a property of some binary operations that means that rearranging the parentheses in an expression will not change the result. In propositional logic, associativity is a valid rule of replacement for expressions in logical proofs.

First-order logic—also called predicate logic, predicate calculus, quantificational logic—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables. Rather than propositions such as "all men are mortal", in first-order logic one can have expressions in the form "for all x, if x is a man, then x is mortal"; where "for all x" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

<span class="mw-page-title-main">Logical connective</span> Symbol connecting sentential formulas in logic

In logic, a logical connective is a logical constant. Connectives can be used to connect logical formulas. For instance in the syntax of propositional logic, the binary connective can be used to join the two atomic formulas and , rendering the complex formula .

The propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives representing the truth functions of conjunction, disjunction, implication, biconditional, and negation. Some sources include other connectives, as in the table below.

<span class="mw-page-title-main">Venn diagram</span> Diagram that shows all possible logical relations between a collection of sets

A Venn diagram is a widely used diagram style that shows the logical relation between sets, popularized by John Venn (1834–1923) in the 1880s. The diagrams are used to teach elementary set theory, and to illustrate simple set relationships in probability, logic, statistics, linguistics and computer science. A Venn diagram uses simple closed curves drawn on a plane to represent sets. Very often, these curves are circles or ellipses.

<span class="mw-page-title-main">De Morgan's laws</span> Pair of logical equivalences

In propositional logic and Boolean algebra, De Morgan's laws, also known as De Morgan's theorem, are a pair of transformation rules that are both valid rules of inference. They are named after Augustus De Morgan, a 19th-century British mathematician. The rules allow the expression of conjunctions and disjunctions purely in terms of each other via negation.

In boolean logic, a disjunctive normal form (DNF) is a canonical normal form of a logical formula consisting of a disjunction of conjunctions; it can also be described as an OR of ANDs, a sum of products, or — in philosophical logic — a cluster concept. As a normal form, it is useful in automated theorem proving.

In Boolean logic, a formula is in conjunctive normal form (CNF) or clausal normal form if it is a conjunction of one or more clauses, where a clause is a disjunction of literals; otherwise put, it is a product of sums or an AND of ORs. As a canonical normal form, it is useful in automated theorem proving and circuit theory.

In mathematics, the distributive property of binary operations is a generalization of the distributive law, which asserts that the equality is always true in elementary algebra. For example, in elementary arithmetic, one has Therefore, one would say that multiplication distributes over addition.

Intuitionistic logic, sometimes more generally called constructive logic, refers to systems of symbolic logic that differ from the systems used for classical logic by more closely mirroring the notion of constructive proof. In particular, systems of intuitionistic logic do not assume the law of the excluded middle and double negation elimination, which are fundamental inference rules in classical logic.

<span class="mw-page-title-main">Logical biconditional</span> Concept in logic and mathematics

In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or biimplication or bientailment, is the logical connective used to conjoin two statements and to form the statement " if and only if ", where is known as the antecedent, and the consequent.

In logic, a truth function is a function that accepts truth values as input and produces a unique truth value as output. In other words: the input and output of a truth function are all truth values; a truth function will always output exactly one truth value, and inputting the same truth value(s) will always output the same truth value. The typical example is in propositional logic, wherein a compound statement is constructed using individual statements connected by logical connectives; if the truth value of the compound statement is entirely determined by the truth value(s) of the constituent statement(s), the compound statement is called a truth function, and any logical connectives used are said to be truth functional.

In propositional logic, a propositional formula is a type of syntactic formula which is well formed. If the values of all variables in a propositional formula are given, it determines a unique truth value. A propositional formula may also be called a propositional expression, a sentence, or a sentential formula.

In logic, a categorical proposition, or categorical statement, is a proposition that asserts or denies that all or some of the members of one category are included in another. The study of arguments using categorical statements forms an important branch of deductive reasoning that began with the Ancient Greeks.

In mathematical logic, a tautology is a formula or assertion that is true for every possible assignment of values to its variables. An example is "x=y or x≠y". Similarly, "either the ball is green, or the ball is not green" is always true, regardless of the colour of the ball.

Axiomatic constructive set theory is an approach to mathematical constructivism following the program of axiomatic set theory. The same first-order language with "" and "" of classical set theory is usually used, so this is not to be confused with a constructive types approach. On the other hand, some constructive theories are indeed motivated by their interpretability in type theories.

In logic, a functionally complete set of logical connectives or Boolean operators is one that can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT.

In logic and mathematics, contraposition, or transposition, refers to the inference of going from a conditional statement into its logically equivalent contrapositive, and an associated proof method known as § Proof by contrapositive. The contrapositive of a statement has its antecedent and consequent inverted and flipped.

A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. In particular, truth tables can be used to show whether a propositional expression is true for all legitimate input values, that is, logically valid.

References

  1. Barksdale, Jr., James B. (October 1970). "Sets and Randolph Diagrams" (PDF). Paper presented at the Louisville Regional Convention of the National Council of Teachers of Mathematics. Louisville, Kentucky: Western Kentucky University . Retrieved 2012-03-15.
  2. Randolph, John F. (February 1965). "Cross-Examining Propositional Calculus and Set Operations". The American Mathematical Monthly. 72 (2). Mathematical Association of America: 117–127. doi:10.1080/00029890.1965.11970498. JSTOR   2310972.