Rhizobium rhizogenes

Last updated

Rhizobium rhizogenes
Rhizobium rhizogenes.png
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Alphaproteobacteria
Order: Hyphomicrobiales
Family: Rhizobiaceae
Genus: Rhizobium
Species:
R. rhizogenes
Binomial name
Rhizobium rhizogenes
(Riker et al. 1930) Young et al. 2001 [1] [lower-alpha 1]
Synonyms
  • Agrobacterium rhizogenes(Riker et al. 1930) Conn 1942
  • Agrobacterium rhizogenes(Riker et al. 1930) Conn 1942 (Approved Lists 1980) emend. Sawada et al. 1993

Rhizobium rhizogenes (formerly Agrobacterium rhizogenes) is a Gram-negative soil bacterium that produces hairy root disease in dicotyledonous plants. R. rhizogenes induces the formation of proliferative multiple-branched adventitious roots at the site of infection, so-called 'hairy roots'. [3] It also induces galls. [4] :39

In the rhizosphere, plants may suffer from wounds by soil pathogens or other sources. This leads to the secretion of phenolic compounds like acetosyringone which have chemotactic effects that attract the bacteria. Under such conditions, certain bacterial genes are turned on leading to the transfer of its T-DNA from its root-inducing plasmid (Ri plasmid) into the plant through the wound. After integration and expression, in vitro or under natural conditions, the hairy root phenotype is observed, which typically includes overdevelopment of a root system that is not completely geotropic, and altered (wrinkled) leaf morphology, if leaves are present. [5] R. rhizogenes also propagates as a seed-borne pathogen. [4] :39

Bacterial genes may be retained within the plant, [6] and sweet potato for instance has retained and actively expresses A. rhizogenes genes which are not present in other members of its genus. [7]

The hairy roots are grown in vitro in bioreactors to study their soil interaction with other pathogens like fungi and nematodes. This technique has also led to the commercial production of certain metabolic compounds that the plant is known to secrete, especially in regard to the medicinal plants that are difficult to cultivate in sufficient quantities by other means. [8] The root cultures are also used for genetic engineering. [9] [10]

Related Research Articles

<span class="mw-page-title-main">Bacterial conjugation</span> Method of bacterial gene transfer

Bacterial conjugation is the transfer of genetic material between bacterial cells by direct cell-to-cell contact or by a bridge-like connection between two cells. This takes place through a pilus. It is a parasexual mode of reproduction in bacteria.

<i>Arabidopsis thaliana</i> Model plant species in the family Brassicaceae

Arabidopsis thaliana, the thale cress, mouse-ear cress or arabidopsis, is a small plant from the mustard family (Brassicaceae), native to Eurasia and Africa. Commonly found along the shoulders of roads and in disturbed land, it is generally considered a weed.

<span class="mw-page-title-main">Genetic transformation</span> Genetic alteration of a cell by uptake of genetic material from the environment

In molecular biology and genetics, transformation is the genetic alteration of a cell resulting from the direct uptake and incorporation of exogenous genetic material from its surroundings through the cell membrane(s). For transformation to take place, the recipient bacterium must be in a state of competence, which might occur in nature as a time-limited response to environmental conditions such as starvation and cell density, and may also be induced in a laboratory.

<i>Agrobacterium tumefaciens</i> Bacterium, genetic engineering tool

Agrobacterium tumefaciens is the causal agent of crown gall disease in over 140 species of eudicots. It is a rod-shaped, Gram-negative soil bacterium. Symptoms are caused by the insertion of a small segment of DNA, from a plasmid into the plant cell, which is incorporated at a semi-random location into the plant genome. Plant genomes can be engineered by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors.

<i>Agrobacterium</i> Genus of bacteria

Agrobacterium is a genus of Gram-negative bacteria established by H. J. Conn that uses horizontal gene transfer to cause tumors in plants. Agrobacterium tumefaciens is the most commonly studied species in this genus. Agrobacterium is well known for its ability to transfer DNA between itself and plants, and for this reason it has become an important tool for genetic engineering.

<span class="mw-page-title-main">Transfer DNA</span> Type of DNA in bacterial genomes

The transfer DNA is the transferred DNA of the tumor-inducing (Ti) plasmid of some species of bacteria such as Agrobacterium tumefaciens and Agrobacterium rhizogenes . The T-DNA is transferred from bacterium into the host plant's nuclear DNA genome. The capability of this specialized tumor-inducing (Ti) plasmid is attributed to two essential regions required for DNA transfer to the host cell. The T-DNA is bordered by 25-base-pair repeats on each end. Transfer is initiated at the right border and terminated at the left border and requires the vir genes of the Ti plasmid.

<i>Ensifer meliloti</i> Species of bacterium

Ensifer meliloti are an aerobic, Gram-negative, and diazotrophic species of bacteria. S. meliloti are motile and possess a cluster of peritrichous flagella. S. meliloti fix atmospheric nitrogen into ammonia for their legume hosts, such as alfalfa. S. meliloti forms a symbiotic relationship with legumes from the genera Medicago, Melilotus and Trigonella, including the model legume Medicago truncatula. This symbiosis promotes the development of a plant organ, termed a root nodule. Because soil often contains a limited amount of nitrogen for plant use, the symbiotic relationship between S. meliloti and their legume hosts has agricultural applications. These techniques reduce the need for inorganic nitrogenous fertilizers.

<span class="mw-page-title-main">Rhizobiaceae</span> Family of bacteria

The Rhizobiaceae is a family of Pseudomonadota comprising multiple subgroups that enhance and hinder plant development. Some bacteria found in the family are used for plant nutrition and collectively make up the rhizobia. Other bacteria such as Agrobacterium tumefaciens and Rhizobium rhizogenes severely alter the development of plants in their ability to induce crown galls or hairy roots, respectively. The family has been of an interest to scientists for centuries in their ability to associate with plants and modify plant development. The Rhizobiaceae are, like all Pseudomonadota, Gram-negative. They are aerobic, and the cells are usually rod-shaped. Many species of the Rhizobiaceae are diazotrophs which are able to fix nitrogen and are symbiotic with plant roots.

<span class="mw-page-title-main">Ti plasmid</span> Circular plasmid used in creation of transgenic plants

A tumour inducing (Ti) plasmid is a plasmid found in pathogenic species of Agrobacterium, including A. tumefaciens, A. rhizogenes, A. rubi and A. vitis.

<span class="mw-page-title-main">Alphaproteobacteria</span> Class of bacteria

Alphaproteobacteria is a class of bacteria in the phylum Pseudomonadota. The Magnetococcales and Mariprofundales are considered basal or sister to the Alphaproteobacteria. The Alphaproteobacteria are highly diverse and possess few commonalities, but nevertheless share a common ancestor. Like all Proteobacteria, its members are gram-negative, although some of its intracellular parasitic members lack peptidoglycan and are consequently gram variable.

<span class="mw-page-title-main">Gene delivery</span> Introduction of foreign genetic material into host cells

Gene delivery is the process of introducing foreign genetic material, such as DNA or RNA, into host cells. Gene delivery must reach the genome of the host cell to induce gene expression. Successful gene delivery requires the foreign gene delivery to remain stable within the host cell and can either integrate into the genome or replicate independently of it. This requires foreign DNA to be synthesized as part of a vector, which is designed to enter the desired host cell and deliver the transgene to that cell's genome. Vectors utilized as the method for gene delivery can be divided into two categories, recombinant viruses and synthetic vectors.

Plant transformation vectors are plasmids that have been specifically designed to facilitate the generation of transgenic plants. The most commonly used plant transformation vectors are T-DNA binary vectors and are often replicated in both E. coli, a common lab bacterium, and Agrobacterium tumefaciens, a plant-virulent bacterium used to insert the recombinant DNA into plants.

A transfer DNA (T-DNA) binary system is a pair of plasmids consisting of a T-DNA binary vector and a virhelper plasmid. The two plasmids are used together to produce genetically modified plants. They are artificial vectors that have been derived from the naturally occurring Ti plasmid found in bacterial species of the genus Agrobacterium, such as A. tumefaciens. The binary vector is a shuttle vector, so-called because it is able to replicate in multiple hosts.

Hairy root culture, also called transformed root culture, is a type of plant tissue culture that is used to study plant metabolic processes or to produce valuable secondary metabolites or recombinant proteins, often with plant genetic engineering.

<span class="mw-page-title-main">Acetosyringone</span> Chemical compound

Acetosyringone is a phenolic natural product and a chemical compound related to acetophenone and 2,6-dimethoxyphenol. It was first described in relation to lignan/phenylpropanoid-type phytochemicals, with isolation from a variety of plant sources, in particular, in relation to wounding and other physiologic changes.

<span class="mw-page-title-main">History of genetic engineering</span>

Genetic engineering is the science of manipulating genetic material of an organism. The first artificial genetic modification accomplished using biotechnology was transgenesis, the process of transferring genes from one organism to another, first accomplished by Herbert Boyer and Stanley Cohen in 1973. It was the result of a series of advancements in techniques that allowed the direct modification of the genome. Important advances included the discovery of restriction enzymes and DNA ligases, the ability to design plasmids and technologies like polymerase chain reaction and sequencing. Transformation of the DNA into a host organism was accomplished with the invention of biolistics, Agrobacterium-mediated recombination and microinjection. The first genetically modified animal was a mouse created in 1974 by Rudolf Jaenisch. In 1976 the technology was commercialised, with the advent of genetically modified bacteria that produced somatostatin, followed by insulin in 1978. In 1983 an antibiotic resistant gene was inserted into tobacco, leading to the first genetically engineered plant. Advances followed that allowed scientists to manipulate and add genes to a variety of different organisms and induce a range of different effects. Plants were first commercialized with virus resistant tobacco released in China in 1992. The first genetically modified food was the Flavr Savr tomato marketed in 1994. By 2010, 29 countries had planted commercialized biotech crops. In 2000 a paper published in Science introduced golden rice, the first food developed with increased nutrient value.

<span class="mw-page-title-main">Genetic engineering techniques</span> Methods used to change the DNA of organisms

Genetic engineering techniques allow the modification of animal and plant genomes. Techniques have been devised to insert, delete, and modify DNA at multiple levels, ranging from a specific base pair in a specific gene to entire genes. There are a number of steps that are followed before a genetically modified organism (GMO) is created. Genetic engineers must first choose what gene they wish to insert, modify, or delete. The gene must then be isolated and incorporated, along with other genetic elements, into a suitable vector. This vector is then used to insert the gene into the host genome, creating a transgenic or edited organism.

Allorhizobium vitis is a plant pathogen that infects grapevines. The species is best known for causing a tumor known as crown gall disease. One of the virulent strains, A. vitis S4, is responsible both for crown gall on grapevines and for inducing a hypersensitive response in other plant species. Grapevines that have been affected by crown gall disease produce fewer grapes than unaffected plants. Though not all strains of A. vitis are tumorigenic, most strains can damage plant hosts.

Transient expression, more frequently referred to "transient gene expression", is the temporary expression of genes that are expressed for a short time after nucleic acid, most frequently plasmid DNA encoding an expression cassette, has been introduced into eukaryotic cells with a chemical delivery agent like calcium phosphate (CaPi) or polyethyleneimine (PEI). However, unlike "stable expression," the foreign DNA does not fuse with the host cell DNA, resulting in the inevitable loss of the vector after several cell replication cycles. The majority of transient gene expressions are done with cultivated animal cells. The technique is also used in plant cells; however, the transfer of nucleic acids into these cells requires different methods than those with animal cells. In both plants and animals, transient expression should result in a time-limited use of transferred nucleic acids, since any long-term expression would be called "stable expression."

The root inducing (Ri) -plasmid of Rhizobium rhizogenes is a plasmid capable of undergoing horizontal gene transfer of its transfer DNA (T-DNA), upon contact with a plant host. The T-DNA of the Ri-plasmid affects the plant host in such a way, that gene expression is altered, especially in regard to phytohormonal balances, metabolism and certain phenotypical characteristics.

References

  1. The Young paper renames on the ground of a lumper view of Rhizobium that subsumes all of Agrobacterium, which also resolves much of the phylogenetic incoherences on the molecular level given 2001 data. GTDB agrees on this assignment of the type strain, and finds that it's still coherent even if Agrobacteirum is not subsumed. However, GTDB makes 4 extra species-level clusters containing genomes likely mislabelled as this species. [2]
  1. Young, JM; Kuykendall, LD; Martínez-Romero, E; Kerr, A; Sawada, H (2001). "A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola, and R. vitis". International Journal of Systematic and Evolutionary Microbiology . 51 (Pt 1): 89–103. doi: 10.1099/00207713-51-1-89 . PMID   11211278.
  2. "GTDB - GCF_000696095.1 (release 214)". gtdb.ecogenomic.org.
  3. Chilton, Mary-Dell; Tepfer, David A.; Petit, Annik; David, Chantal; Casse-Delbart, Francine; Tempé, Jacques (1982). "Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells". Nature. 295 (5848): 432–434. Bibcode:1982Natur.295..432C. doi:10.1038/295432a0. ISSN   1476-4687.
  4. 1 2 Kumar, Ravindra; Gupta, Anuja, eds. (2020). Seed-Borne Diseases of Agricultural Crops: Detection, Diagnosis & Management. Springer Nature Singapore Pte Ltd. doi:10.1007/978-981-32-9046-4. ISBN   978-981-32-9046-4.
  5. Cardarelli, M.; Mariotti, D.; Pomponi, M.; Spanò, L.; Capone, I.; Costantino, P. (1987). "Agrobacterium rhizogenes T-DNA genes capable of inducing hairy root phenotype". Molecular and General Genetics MGG. 209 (3): 475–480. doi:10.1007/BF00331152. ISSN   1432-1874. PMID   17193709.
  6. Intrieri, Maria Carmela; Buiatti, Marcello (July 2001). "The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana". Molecular Phylogenetics and Evolution . 20 (1): 100–110. Bibcode:2001MolPE..20..100I. doi:10.1006/mpev.2001.0927. PMID   11421651.
  7. Kyndt, Tina; Quispea, Dora; Zhaic, Hong; Jarretd, Robert; Ghislainb, Marc; Liuc, Qingchang; Gheysena, Godelieve; Kreuzeb, Jan F. (20 April 2015). "The genome of cultivated sweet potato contains Agrobacterium T-DNAs with expressed genes: An example of a naturally transgenic food crop". Proceedings of the National Academy of Sciences of the United States of America. 112 (18): 5844–5849. Bibcode:2015PNAS..112.5844K. doi: 10.1073/pnas.1419685112 . PMC   4426443 . PMID   25902487.
  8. Shanks, Jacqueline V.; Morgan, John (April 1999). "Plant 'hairy root' culture". Current Opinion in Biotechnology . 10 (2): 151–155. doi:10.1016/S0958-1669(99)80026-3. PMID   10209145.
  9. Otani, Motoyasu; Mii, Masahiro; Handa, Takashi; Kamada, Hiroshi; Shimada, Takiko (1993). "Transformation of sweet potato (Ipomoea batatas (L.) Lam.) plants by Agrobacterium rhizogenes". Plant Science . 94 (1): 151–159. Bibcode:1993PlnSc..94..151O. doi:10.1016/0168-9452(93)90016-S. ISSN   0168-9452.
  10. Van de Velde, Willem; Mergeay, Joachim; Holsters, Marcelle; Goormachtig, Sofie (December 2003). "Agrobacterium rhizogenes-mediated transformation of Sesbania rostrata". Plant Science . 165 (6): 1281–1288. Bibcode:2003PlnSc.165.1281V. doi:10.1016/S0168-9452(03)00339-X. ISSN   0168-9452.