Sarcophaga peregrina

Last updated

Sarcophaga peregrina
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Superfamily:
Family:
Subfamily:
Genus:
Subgenus:
Species:
S. peregrina
Binomial name
Sarcophaga peregrina
Synonyms

Sarcophaga peregrina (synonym Boettcherisca peregrina) is a species of flesh fly belonging to the family Sarcophagidae. They easily breed, multiply and spread in human habitation, from garbage, faeces and livestock manures. In many regions, they are health concerns as they are active vectors of infectious diseases such as myiasis in humans. Due to their close contact with human activities, they are considered as forensically important insects. They can be used for molecular analysis of the time of postmortem intervals. They are also occasionally parasitic in other invertebrates. They produce a group of antibacterial peptide called sarcotoxins. The first of such protein, sarcotoxin 1A, was determined in 1983 by Masayuki Okada and Shunji Natori at the University of Tokyo, Japan. [1] [2]

Contents

Distribution

Sarcophaga peregrina has been reported in Southeast Asian region from Sri Lanka to Indonesia, China, Japan, Australia, Samoa and Cook Islands, Hawaii, and throughout Europe. [3] They are usually the most abundant fly in these regions as they rapidly breed in chicken manure, and also on foods and excrement around human habitations. [4]

Description

Sarcophaga peregrina looks like normal flies, and are often difficult to identify easily. The average body length is 8–11 mm. The body colour is grey with black markings. The lower part of the head is silver-grey. The thorax is entirely grey with a characteristic three black stripes, which is marked along the longitudinal body axis. The abdomen is also grey with black stripes; one longitudinal line in the middle and three big transverse lines across. The first of the abdominal stripe is somewhat V-shaped. The wings are transparent. An important microscopical diagnosis is the presence of 5-20 long slender hairs (absent in most species of flesh fly) on propleura - a deepset plate on the antero-lateral corner of the thorax adjacent to the lower part of the spiracle. [4] The larvae are characterised by having twelve segments, each with short spines at its posterior margin. The posterior end is broader and the anterior tapering with the anterior end having two oral hooks and mouth brushes. [5]

Pathogenicity

Sarcophaga peregrina easily breed and multiply where there are garbage (especially having meat), human and animal faeces, and fish baits. Thus their close human contact often results in their infection. They are known to deposit their larvae in the wounds and scratches on skin in humans. [6] As such their larvae have been reported to cause oral and nasal myiasis. [3] In 1987 a clinical case of first human intestinal myasis was reported from a Japanese patient. The live larvae were easily identified from the stool sample. [7] They also infect some species of earthworm and locust. [3]

Application

Sarcophaga peregrina will rapidly swarm corpse cadavers, and for this reason they can be used as important indications of the postmortem interval in forensic investigations. Especially with molecular techniques, such as identifying cytochrome oxidase (COI) and 16S rDNA genes, they can be identified from other flies even when the corpse is infested with different species. [8] Then the age of the flies can be specifically determined, using technique such as pteridine fluorescence, and this helps to establish the time of death. [9]

Related Research Articles

<span class="mw-page-title-main">Forensic entomology</span> Application of insect and other arthropod biology to forensics

Forensic entomology is the scientific study of the colonization of a dead body by arthropods. This includes the study of insect types commonly associated with cadavers, their respective life cycles, their ecological presences in a given environment, as well as the changes in insect assemblage with the progression of decomposition. Insect succession patterns are identified based on the time a given species of insect spends in a given developmental stage, and how many generations have been produced since the insects introduction to a given food source. Insect development alongside environmental data such as temperature and vapor density, can be used to estimate the time since death, due to the fact that flying insects are attracted to a body immediately after death. The identification of postmortem interval to aid in death investigations is the primary scope of this scientific field. However, forensic entomology is not limited to homicides, it has also been used in cases of neglect and abuse, in toxicology contexts to detect the presence of drugs, and in dry shelf food contamination incidents. Equally, insect assemblages present on a body, can be used to approximate a given location, as certain insects may be unique to certain areas. Therefore, forensic entomology can be divided into three subfields: urban, stored-product and medico-legal/medico-criminal entomology.

<span class="mw-page-title-main">Calliphoridae</span> Family of insects in the Diptera order

The Calliphoridae are a family of insects in the order Diptera, with almost 1,900 known species. The maggot larvae, often used as fishing bait, are known as gentles. The family is known to be polyphyletic, but much remains disputed regarding proper treatment of the constituent taxa, some of which are occasionally accorded family status.

<span class="mw-page-title-main">Flesh fly</span> Family of insects

Sarcophagidae are a family of flies commonly known as flesh flies. They differ from most flies in that they are ovoviviparous, opportunistically depositing hatched or hatching maggots instead of eggs on carrion, dung, decaying material, or open wounds of mammals, hence their common name. Some flesh fly larvae are internal parasites of other insects such as Orthoptera, and some, in particular the Miltogramminae, are kleptoparasites of solitary Hymenoptera. The adults mostly feed on fluids from animal bodies, nectar, sweet foods, fluids from animal waste and other organic substances. Juveniles need protein to develop and may be laid on carrion, dung or sweet plant foods.

<span class="mw-page-title-main">Oestroidea</span> Superfamily of flies

Oestroidea is a superfamily of Calyptratae including the blow flies, bot flies, flesh flies, and their relatives. It occurs worldwide and has about 15,000 described species.

<span class="mw-page-title-main">Botfly</span> Parasitic insect

Botflies, also known as warble flies, heel flies, and gadflies, are a family of flies known as the Oestridae. Their larvae are internal parasites of mammals, some species growing in the host's flesh and others within the gut. Dermatobia hominis is the only species of botfly known to parasitize humans routinely, though other species of flies cause myiasis in humans.

<span class="mw-page-title-main">Myiasis</span> Infestation of parasitic maggots

Myiasis, also known as flystrike or fly strike, is the parasitic infestation of the body of a live animal by fly larvae (maggots) that grow inside the host while feeding on its tissue. Although flies are most commonly attracted to open wounds and urine- or feces-soaked fur, some species can create an infestation even on unbroken skin and have been known to use moist soil and non-myiatic flies as vector agents for their parasitic larvae.

<i>Chrysomya putoria</i> Species of fly

Chrysomya putoria, also known as the tropical African latrine blowfly, is a fly species belonging to the blowfly family, Calliphoridae.C. putoria is native to Africa and has recently spread to the Americas. These flies pose significant health risks, especially due to their close association with human settlements. Adult flies can carry pathogens, while larvae may cause myiasis by growing and feeding on the flesh of domestic animals and humans. Other myiasis-causing flies in the same genus are C. bezziana and C. megacephala. C. putoria and other flies that feed on decomposing tissue are used as important tools in forensic entomology to establish the post-mortem interval, or the time elapsed since death.

<i>Sarcophaga</i> Genus of insects (true flies)

Sarcophaga is a genus of true flies and the type genus of the flesh-fly family (Sarcophagidae). The members of this cosmopolitan genus are frequently known as common flesh flies.

<i>Wohlfahrtia magnifica</i> Species of fly

Wohlfahrtia magnifica, the spotted flesh fly, or sometimes called the screwworm fly, though species of flies from other families go by this name. It is a species of fly belonging to the family Sarcophagidae. The adults are about 6–10 mm in length; third-instar larvae are 5–7 mm in length.

<i>Cochliomyia</i> Genus of insects

Cochliomyia is a genus in the family Calliphoridae, known as blowflies, in the order Diptera. Cochliomyia is commonly referred to as the New World screwworm flies, as distinct from Old World screwworm flies. Four species are in this genus: C. macellaria, C. hominivorax, C. aldrichi, and C. minima. C. hominivorax is known as the primary screwworm because its larvae produce myiasis and feed on living tissue. This feeding causes deep, pocket-like lesions in the skin, which can be very damaging to the animal host. C. macellaria is known as the secondary screwworm because its larvae produce myiasis, but feed only on necrotic tissue. Both C. hominivorax and C. macellaria thrive in warm, tropical areas.

<i>Sarcophaga pernix</i> Species of fly

Sarcophaga pernix, also known as the red-tailed flesh fly, is a fly in the Sarcophagidae family. This fly often breeds in carrion and feces, making it a possible vector for disease. The larvae of this species can cause myiasis, as well as accidental myiasis. It is potentially useful in forensic entomology.

<i>Sarcophaga bullata</i> Species of fly

Sarcophaga bullata, or the grey flesh fly, is a species of fly belonging to the family Sarcophagidae. It varies in size from small to large, 8 to 17 millimeters in length and is very similar in appearance and behavior to a closely related species, Sarcophaga haemorrhoidalis. S. bullata is a common scavenger species in the Eastern United States, but is found throughout the Nearctic region. Identification down to the species level in the family Sarcophagidae is notably difficult and relies primarily on the male genitalia. Though limited information is available regarding S. bullata, it has gained increasing recognition in the field of forensic entomology as a forensically relevant fly species, as it may be among the first species to colonize human remains. In these instances, recovered maggots may be analyzed for post-mortem interval (PMI) estimations, which may be used as evidence in courts of law. Current studies regarding S. bullata have revealed a maternal effect operating in these flies that prevents pupal diapause under certain environmental conditions, which is an important factor to be considered during forensic analyses.

<i>Fannia scalaris</i> Species of fly

Fannia scalaris, also known as the latrine fly, is a fly species in the Fanniidae family. This species is smaller and more slender than the house fly, Musca domestica, and is similar in appearance to the lesser house fly, Fannia canicularis. The life cycle of this species can be as long as one month. These flies are globally distributed in urban areas as they are drawn to unsanitary environments. F. scalaris is a major cause of myiasis, the infestation of a body cavity by fly maggots. The adults infest bodies that have decomposed, making the species an important part of forensic entomology. The larvae of this fly have adapted protuberances, or feathered appendages, that allow them to survive in such a moist environment. Entomologists continue to research the effects that F. scalaris may have medically, forensically, and on the environment around them.

<i>Muscina</i> Genus of flies

Muscina is a genus of flies that belongs to the family Muscidae, currently consisting of 27 species. They are worldwide in distribution and are frequently found in livestock facilities and outside restrooms. The most common species are M. stabulans, M. levida, and M. prolapsa. Muscina flies commonly breed in manure and defecate on food, which has been linked to the spread of some disease and illnesses. The occurrence of Muscina larvae on dead bodies has led to their regular use in forensic investigations, as they may be used to estimate the time of death. Research have shown the prevalence of certain species of Muscina flies as vectors of diseases such as poliomyelitis.

<i>Calliphora livida</i> Species of fly

Calliphora livida is a member of the family Calliphoridae, the blow flies. This large family includes the genus Calliphora, the "blue bottle flies". This genus is important in the field of forensic entomology because of its value in post-mortem interval estimation.

<i>Muscina stabulans</i> Species of fly

Muscina stabulans, commonly known as the false stable fly, is a fly from the family Muscidae.

<i>Sarcophaga africa</i> Species of fly

Sarcophaga (Bercaea) africa is a species of fly belonging to the family Sarcophagidae, the flesh-flies. It is the best known species in its genus. S. africa feeds on living and dead tissue, including snails, and other decomposing matter, and feces.

<i>Sarcophaga carnaria</i> Species of fly

Sarcophaga carnaria is a European(globalized) species of flesh fly within the common flesh fly genus, Sarcophaga.

Sarcotoxins are a group of antibacterial peptides present in the flesh fly belonging to the genus Sarcophaga. The proteins are present in the haemolymph of the flesh fly. The first protein, called sarcotoxin 1A, was discovered in 1983 from Sarcophaga peregrina by Masayuki Okada and Shunji Natori at the University of Tokyo, Japan.

<span class="mw-page-title-main">Sarcophaga barbata</span> Fly species

Sarcophaga barbata is a species from the genus Sarcophaga and the family of flesh fly, Sarcophagidae. It is most closely related to S. plinthopyga, S. securifera, and S. bullata of the same genus. The species was first discovered by Eugene Thomson in 1868. S. barbata has also been found in the Middle East near carcasses, where the larvae can thrive. S. barbata is also a prominent organism in scientific research and has been used to study L-3-glycerophosphate oxidation and location within the mitochondria.

References

  1. Iwai, H.; Nakajima, Y.; Natori, S.; Arata, Y.; Shimada, I. (Oct 1993). "Solution conformation of an antibacterial peptide, sarcotoxin IA, as determined by 1H-NMR". Eur J Biochem. 217 (2): 639–44. doi: 10.1111/j.1432-1033.1993.tb18287.x . PMID   8223606.
  2. Okada M; Natori S (1984). "Mode of action of a bactericidal protein induced in the haemolymph of Sarcophaga peregrina (flesh-fly) larvae". Biochem J. 222 (1): 119–124. doi:10.1042/bj2220119. PMC   1144151 . PMID   6383355.
  3. 1 2 3 Meiklejohn, Kelly Ann. "Taxonomy and systematics of the Australian Sarcophaga s.l (Diptera: Sarcophagidae)". ro.uow.edu.au. University of Wollongong. Retrieved 21 September 2013.
  4. 1 2 McCormack, Gerald (2007). "Cook Islands Biodiversity Database, Version 2007.2". The Cook Islands Natural Heritage Trust. Retrieved 21 September 2013.
  5. Das A; Pandey A; Madan M; Asthana AK; Gautam A (2010). "Accidental intestinal myiasis caused by genus Sarcophaga". Indian J Med Microbiol. 28 (2): 176–178. doi: 10.4103/0255-0857.62503 . PMID   20404472.
  6. Maurice Theodore James (1947). The Flies that Cause Myiasis in Man. U.S. Department of Agriculture. p.  55.
  7. Tachibana H; Sasao M; Tanaka T; Nagakura K; Kaneda Y; Shinonaga S; Kano R (1987). "A case of intestinal myiasis in Japan". Tokai J Exp Clin Med. 12 (5–6): 349–352. PMID   3508658.
  8. Guo Y; Cai J; Chang Y; Li X; Liu Q; Wang X; Wang X; Zhong M; Wen J; Wang J (2011). "Identification of forensically important sarcophagid flies (Diptera: Sarcophagidae) in China, based on COI and 16S rDNA gene sequences". J Forensic Sci. 56 (6): 1534–40. doi:10.1111/j.1556-4029.2011.01882.x. PMID   21854377. S2CID   32706344.
  9. Zhu GH; Ye GY; Li K; Hu C; Xu XH (Mar 2013). "Determining the age of adult flesh flies, Boettcherisca peregrina, using pteridine fluorescence". Med Vet Entomol. 27 (1): 59–63. doi:10.1111/j.1365-2915.2012.01021.x. PMID   22845466. S2CID   20090010.